{"title":"具有多个服务质量目标的流计算中的贝叶斯驱动自动扩展","authors":"Liang Zhang;Wenli Zheng;Kuangyu Zheng;Hongzi Zhu;Chao Li;Minyi Guo","doi":"10.1109/TPDS.2024.3399834","DOIUrl":null,"url":null,"abstract":"Stream processing systems commonly work with auto-scaling to ensure resource efficiency and quality of service (QoS). Existing auto-scaling solutions lack accuracy in resource allocation because they rely on static QoS-resource models that fail to account for high workload variability and use indirect metrics with much distractive information. Moreover, different types of QoS metrics present different characteristics and thus need individual auto-scaling methods. In this paper, we propose a versatile auto-scaling solution for operator-level parallelism configuration, called AuTraScale+, to meet the throughput, processing-time latency, and event-time latency targets. AuTraScale+ follows the Bayesian optimization framework to make scaling decisions. First, it uses the Gaussian process model to eliminate the negative influence of uncertain factors on the performance model accuracy. Second, it leverages the expected improvement-based (EI-based) acquisition function to search and recommend the optimal configuration quickly. Besides, to make a more accurate scaling decision when the new model is not ready, AuTraScale+ proposes a transfer learning algorithm to estimate the benefits of all configurations at a new rate based on existing models and then recommend the optimal one. We implement and evaluate AuTraScale+ on the Flink platform. The experimental results on three representative workloads demonstrate that compared with the state-of-the-art methods, AuTraScale+ can reduce 66.6% and 36.7% resource consumption, respectively, in the scale-down and scale-up scenarios while achieving their throughput and processing-time latency targets. Compared with other methods of optimizing event-time latency, AuTraScale+ saves 26.9% of resources on average.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian-Driven Automated Scaling in Stream Computing With Multiple QoS Targets\",\"authors\":\"Liang Zhang;Wenli Zheng;Kuangyu Zheng;Hongzi Zhu;Chao Li;Minyi Guo\",\"doi\":\"10.1109/TPDS.2024.3399834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stream processing systems commonly work with auto-scaling to ensure resource efficiency and quality of service (QoS). Existing auto-scaling solutions lack accuracy in resource allocation because they rely on static QoS-resource models that fail to account for high workload variability and use indirect metrics with much distractive information. Moreover, different types of QoS metrics present different characteristics and thus need individual auto-scaling methods. In this paper, we propose a versatile auto-scaling solution for operator-level parallelism configuration, called AuTraScale+, to meet the throughput, processing-time latency, and event-time latency targets. AuTraScale+ follows the Bayesian optimization framework to make scaling decisions. First, it uses the Gaussian process model to eliminate the negative influence of uncertain factors on the performance model accuracy. Second, it leverages the expected improvement-based (EI-based) acquisition function to search and recommend the optimal configuration quickly. Besides, to make a more accurate scaling decision when the new model is not ready, AuTraScale+ proposes a transfer learning algorithm to estimate the benefits of all configurations at a new rate based on existing models and then recommend the optimal one. We implement and evaluate AuTraScale+ on the Flink platform. The experimental results on three representative workloads demonstrate that compared with the state-of-the-art methods, AuTraScale+ can reduce 66.6% and 36.7% resource consumption, respectively, in the scale-down and scale-up scenarios while achieving their throughput and processing-time latency targets. Compared with other methods of optimizing event-time latency, AuTraScale+ saves 26.9% of resources on average.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10529587/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10529587/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Bayesian-Driven Automated Scaling in Stream Computing With Multiple QoS Targets
Stream processing systems commonly work with auto-scaling to ensure resource efficiency and quality of service (QoS). Existing auto-scaling solutions lack accuracy in resource allocation because they rely on static QoS-resource models that fail to account for high workload variability and use indirect metrics with much distractive information. Moreover, different types of QoS metrics present different characteristics and thus need individual auto-scaling methods. In this paper, we propose a versatile auto-scaling solution for operator-level parallelism configuration, called AuTraScale+, to meet the throughput, processing-time latency, and event-time latency targets. AuTraScale+ follows the Bayesian optimization framework to make scaling decisions. First, it uses the Gaussian process model to eliminate the negative influence of uncertain factors on the performance model accuracy. Second, it leverages the expected improvement-based (EI-based) acquisition function to search and recommend the optimal configuration quickly. Besides, to make a more accurate scaling decision when the new model is not ready, AuTraScale+ proposes a transfer learning algorithm to estimate the benefits of all configurations at a new rate based on existing models and then recommend the optimal one. We implement and evaluate AuTraScale+ on the Flink platform. The experimental results on three representative workloads demonstrate that compared with the state-of-the-art methods, AuTraScale+ can reduce 66.6% and 36.7% resource consumption, respectively, in the scale-down and scale-up scenarios while achieving their throughput and processing-time latency targets. Compared with other methods of optimizing event-time latency, AuTraScale+ saves 26.9% of resources on average.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.