Haniyeh Fathi, Zeinab El-Sayegh, Mir Hamid Reza Ghoreishy
{"title":"乘用车轮胎滚动阻力和车轮力的预测:关于使用不同材料模型和数值方法的比较研究","authors":"Haniyeh Fathi, Zeinab El-Sayegh, Mir Hamid Reza Ghoreishy","doi":"10.1177/09544070241244556","DOIUrl":null,"url":null,"abstract":"In this research, the characteristics of tire-road interaction of a 185/65R14 88H passenger car tire are investigated using the Finite Element Method in Abaqus commercial software. Moreover, the effect of various material models on tire performance is studied by implementing Visco-Hyperelastic, Parallel Rheological Framework, and Mullins effect. The novelty of this research is devoted to the development of the complex material models particularly considering the Mullins effect of the rubber compounds in the tire structure for the load-displacement criteria. For this purpose, a tire finite element model was generated using Abaqus/Standard command line in two different methods including an Arbitrary Lagrangian-Eulerian formulation for steady state rolling and implementing a pure Lagrangian approach for the transient dynamic analysis carried out implicit and explicit process respectively. Rolling resistance force was computed according to ISO 28580 with 210 kPa inflation pressure and 4155 N vertical load. The footprint test results were extracted in both static and transient dynamic analyses. Additionally, the wheel reaction force was predicted using an indirect method by extracting the tire-terrain contact patch reaction force in Abaqus/Explicit to observe the effect of the material convection along with stress softening phenomena of the rubber compounds of tire structure. In the post-processing analysis, the wheel reaction was filtered by implementing SAE60 filter to reduce the numerical noise in the final response.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of rolling resistance and wheel force for a passenger car tire: A comparative study on the use of different material models and numerical approaches\",\"authors\":\"Haniyeh Fathi, Zeinab El-Sayegh, Mir Hamid Reza Ghoreishy\",\"doi\":\"10.1177/09544070241244556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, the characteristics of tire-road interaction of a 185/65R14 88H passenger car tire are investigated using the Finite Element Method in Abaqus commercial software. Moreover, the effect of various material models on tire performance is studied by implementing Visco-Hyperelastic, Parallel Rheological Framework, and Mullins effect. The novelty of this research is devoted to the development of the complex material models particularly considering the Mullins effect of the rubber compounds in the tire structure for the load-displacement criteria. For this purpose, a tire finite element model was generated using Abaqus/Standard command line in two different methods including an Arbitrary Lagrangian-Eulerian formulation for steady state rolling and implementing a pure Lagrangian approach for the transient dynamic analysis carried out implicit and explicit process respectively. Rolling resistance force was computed according to ISO 28580 with 210 kPa inflation pressure and 4155 N vertical load. The footprint test results were extracted in both static and transient dynamic analyses. Additionally, the wheel reaction force was predicted using an indirect method by extracting the tire-terrain contact patch reaction force in Abaqus/Explicit to observe the effect of the material convection along with stress softening phenomena of the rubber compounds of tire structure. In the post-processing analysis, the wheel reaction was filtered by implementing SAE60 filter to reduce the numerical noise in the final response.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544070241244556\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241244556","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Prediction of rolling resistance and wheel force for a passenger car tire: A comparative study on the use of different material models and numerical approaches
In this research, the characteristics of tire-road interaction of a 185/65R14 88H passenger car tire are investigated using the Finite Element Method in Abaqus commercial software. Moreover, the effect of various material models on tire performance is studied by implementing Visco-Hyperelastic, Parallel Rheological Framework, and Mullins effect. The novelty of this research is devoted to the development of the complex material models particularly considering the Mullins effect of the rubber compounds in the tire structure for the load-displacement criteria. For this purpose, a tire finite element model was generated using Abaqus/Standard command line in two different methods including an Arbitrary Lagrangian-Eulerian formulation for steady state rolling and implementing a pure Lagrangian approach for the transient dynamic analysis carried out implicit and explicit process respectively. Rolling resistance force was computed according to ISO 28580 with 210 kPa inflation pressure and 4155 N vertical load. The footprint test results were extracted in both static and transient dynamic analyses. Additionally, the wheel reaction force was predicted using an indirect method by extracting the tire-terrain contact patch reaction force in Abaqus/Explicit to observe the effect of the material convection along with stress softening phenomena of the rubber compounds of tire structure. In the post-processing analysis, the wheel reaction was filtered by implementing SAE60 filter to reduce the numerical noise in the final response.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.