María Teresa Ordás, David Yeregui Marcos del Blanco, José Aveleira-Mata, Francisco Zayas-Gato, Esteban Jove, José-Luis Casteleiro-Roca, Héctor Quintián, José Luis Calvo-Rolle, Héctor Alaiz-Moreton
{"title":"预测电池充电状态的聚类技术性能比较:混合模型方法","authors":"María Teresa Ordás, David Yeregui Marcos del Blanco, José Aveleira-Mata, Francisco Zayas-Gato, Esteban Jove, José-Luis Casteleiro-Roca, Héctor Quintián, José Luis Calvo-Rolle, Héctor Alaiz-Moreton","doi":"10.1093/jigpal/jzae021","DOIUrl":null,"url":null,"abstract":"Batteries are a fundamental storage component due to its various applications in mobility, renewable energies and consumer electronics among others. Regardless of the battery typology, one key variable from a user’s perspective is the remaining energy in the battery. It is usually presented as the percentage of remaining energy compared to the total energy that can be stored and is labeled State Of Charge (SOC). This work addresses the development of a hybrid model based on a Lithium Iron Phosphate (LiFePO4) power cell, due to its broad implementation. The proposed model calculates the SOC, by means of voltage and electric current as inputs and the latter as the output. Therefore, four models based on k-Means, Agglomerative Clustering, Gaussian Mixture and Spectral Clustering techniques have been tested in order to obtain an optimal solution.","PeriodicalId":51114,"journal":{"name":"Logic Journal of the IGPL","volume":"111 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering techniques performance comparison for predicting the battery state of charge: A hybrid model approach\",\"authors\":\"María Teresa Ordás, David Yeregui Marcos del Blanco, José Aveleira-Mata, Francisco Zayas-Gato, Esteban Jove, José-Luis Casteleiro-Roca, Héctor Quintián, José Luis Calvo-Rolle, Héctor Alaiz-Moreton\",\"doi\":\"10.1093/jigpal/jzae021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Batteries are a fundamental storage component due to its various applications in mobility, renewable energies and consumer electronics among others. Regardless of the battery typology, one key variable from a user’s perspective is the remaining energy in the battery. It is usually presented as the percentage of remaining energy compared to the total energy that can be stored and is labeled State Of Charge (SOC). This work addresses the development of a hybrid model based on a Lithium Iron Phosphate (LiFePO4) power cell, due to its broad implementation. The proposed model calculates the SOC, by means of voltage and electric current as inputs and the latter as the output. Therefore, four models based on k-Means, Agglomerative Clustering, Gaussian Mixture and Spectral Clustering techniques have been tested in order to obtain an optimal solution.\",\"PeriodicalId\":51114,\"journal\":{\"name\":\"Logic Journal of the IGPL\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic Journal of the IGPL\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzae021\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Journal of the IGPL","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
Clustering techniques performance comparison for predicting the battery state of charge: A hybrid model approach
Batteries are a fundamental storage component due to its various applications in mobility, renewable energies and consumer electronics among others. Regardless of the battery typology, one key variable from a user’s perspective is the remaining energy in the battery. It is usually presented as the percentage of remaining energy compared to the total energy that can be stored and is labeled State Of Charge (SOC). This work addresses the development of a hybrid model based on a Lithium Iron Phosphate (LiFePO4) power cell, due to its broad implementation. The proposed model calculates the SOC, by means of voltage and electric current as inputs and the latter as the output. Therefore, four models based on k-Means, Agglomerative Clustering, Gaussian Mixture and Spectral Clustering techniques have been tested in order to obtain an optimal solution.
期刊介绍:
Logic Journal of the IGPL publishes papers in all areas of pure and applied logic, including pure logical systems, proof theory, model theory, recursion theory, type theory, nonclassical logics, nonmonotonic logic, numerical and uncertainty reasoning, logic and AI, foundations of logic programming, logic and computation, logic and language, and logic engineering.
Logic Journal of the IGPL is published under licence from Professor Dov Gabbay as owner of the journal.