{"title":"纳米二氧化钛和聚丙烯纤维对再生骨料混凝土力学性能和耐久性的影响","authors":"Xiong Wei, Wang Xiaoqing, Li Chunmei","doi":"10.1186/s40069-023-00656-7","DOIUrl":null,"url":null,"abstract":"<p>In order to promote the engineering application of recycled concrete, the effects of PPF and nano-TiO2 dioxide on the mechanical properties and durability of recycled concrete were studied.</p><p>Polypropylene fiber recycled concrete(PRAC) and nano-TiO2 recycled concrete(TRAC) were prepared by adding different volume contents of PPF and nano-TiO<sub>2</sub>. The experimental findings demonstrated that the PPF and nano-TiO<sub>2</sub> improved the splitting tensile strength of RAC better than the compressive strength. When the volume content of nano-TiO<sub>2</sub>. and PPF is 0.8% and 1.0%, respectively, the corresponding splitting tensile strength of concrete reaches the maximum value(3.4 and 3.7 MPa). The contribution rates of nano-TiO<sub>2</sub> and PPF with different volume contents to the mechanical properties of RAC have optimal values, which are 0.4 and 1.0%, respectively. The incorporation of nano-TiO<sub>2</sub> and PPF can effectively inhibit the loss of RAC mass and the generation of pores under freeze–thaw conditions, and slow down the decrease of dynamic elastic modulus. When the volume content of PPF is 1.0% and the volume content of nano-TiO<sub>2</sub> is 0.4%, the protection effect on the internal structure of RAC is better, and its carbon resistance is better. The results of RSM model analysis and prediction show that both PPF and nano-TiO<sub>2</sub> can be used as admixture materials to improve the mechanical properties and durability of RAC, and the comprehensive improvement effect of PPF on RAC performance is better than that of nano-TiO<sub>2</sub>.</p>","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":"254 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Nano-TiO2 and Polypropylene Fiber on Mechanical Properties and Durability of Recycled Aggregate Concrete\",\"authors\":\"Xiong Wei, Wang Xiaoqing, Li Chunmei\",\"doi\":\"10.1186/s40069-023-00656-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to promote the engineering application of recycled concrete, the effects of PPF and nano-TiO2 dioxide on the mechanical properties and durability of recycled concrete were studied.</p><p>Polypropylene fiber recycled concrete(PRAC) and nano-TiO2 recycled concrete(TRAC) were prepared by adding different volume contents of PPF and nano-TiO<sub>2</sub>. The experimental findings demonstrated that the PPF and nano-TiO<sub>2</sub> improved the splitting tensile strength of RAC better than the compressive strength. When the volume content of nano-TiO<sub>2</sub>. and PPF is 0.8% and 1.0%, respectively, the corresponding splitting tensile strength of concrete reaches the maximum value(3.4 and 3.7 MPa). The contribution rates of nano-TiO<sub>2</sub> and PPF with different volume contents to the mechanical properties of RAC have optimal values, which are 0.4 and 1.0%, respectively. The incorporation of nano-TiO<sub>2</sub> and PPF can effectively inhibit the loss of RAC mass and the generation of pores under freeze–thaw conditions, and slow down the decrease of dynamic elastic modulus. When the volume content of PPF is 1.0% and the volume content of nano-TiO<sub>2</sub> is 0.4%, the protection effect on the internal structure of RAC is better, and its carbon resistance is better. The results of RSM model analysis and prediction show that both PPF and nano-TiO<sub>2</sub> can be used as admixture materials to improve the mechanical properties and durability of RAC, and the comprehensive improvement effect of PPF on RAC performance is better than that of nano-TiO<sub>2</sub>.</p>\",\"PeriodicalId\":13832,\"journal\":{\"name\":\"International Journal of Concrete Structures and Materials\",\"volume\":\"254 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Concrete Structures and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40069-023-00656-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-023-00656-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Effect of Nano-TiO2 and Polypropylene Fiber on Mechanical Properties and Durability of Recycled Aggregate Concrete
In order to promote the engineering application of recycled concrete, the effects of PPF and nano-TiO2 dioxide on the mechanical properties and durability of recycled concrete were studied.
Polypropylene fiber recycled concrete(PRAC) and nano-TiO2 recycled concrete(TRAC) were prepared by adding different volume contents of PPF and nano-TiO2. The experimental findings demonstrated that the PPF and nano-TiO2 improved the splitting tensile strength of RAC better than the compressive strength. When the volume content of nano-TiO2. and PPF is 0.8% and 1.0%, respectively, the corresponding splitting tensile strength of concrete reaches the maximum value(3.4 and 3.7 MPa). The contribution rates of nano-TiO2 and PPF with different volume contents to the mechanical properties of RAC have optimal values, which are 0.4 and 1.0%, respectively. The incorporation of nano-TiO2 and PPF can effectively inhibit the loss of RAC mass and the generation of pores under freeze–thaw conditions, and slow down the decrease of dynamic elastic modulus. When the volume content of PPF is 1.0% and the volume content of nano-TiO2 is 0.4%, the protection effect on the internal structure of RAC is better, and its carbon resistance is better. The results of RSM model analysis and prediction show that both PPF and nano-TiO2 can be used as admixture materials to improve the mechanical properties and durability of RAC, and the comprehensive improvement effect of PPF on RAC performance is better than that of nano-TiO2.
期刊介绍:
The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on
Properties and performance of concrete and concrete structures
Advanced and improved experimental techniques
Latest modelling methods
Possible improvement and enhancement of concrete properties
Structural and microstructural characterization
Concrete applications
Fiber reinforced concrete technology
Concrete waste management.