Haimyapriya Buragohain, Kaushik Talukdar, Malaya K. Nayak
{"title":"利用相对论扩展耦合簇方法研究双原子分子的永久电偶极矩","authors":"Haimyapriya Buragohain, Kaushik Talukdar, Malaya K. Nayak","doi":"10.1007/s00214-024-03117-w","DOIUrl":null,"url":null,"abstract":"<p>We employ the four-component relativistic extended–coupled–cluster (ECC) method, a variational coupled–cluster (CC) approach, to compute the permanent electric dipole moment (PDM) of open-shell diatomic molecules (CaH, CaF, SrH and SrF) in their ground electronic state. The ECC results are compared with the PDM values estimated by the experiments as well as other single-reference CC-based approaches (the <i>Z</i>-vector technique, the expectation value method and the finite field approach) within the four-component relativistic framework to test the efficacy of the employed method. Our study reveals that the relativistic ECC method can yield reliable results for the PDMs of the considered molecular systems. We also observe that the computed results of the dipole moment improve upon the augmentation of diffused functions to the basis set.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Permanent electric dipole moment of diatomic molecules using relativistic extended–coupled–cluster method\",\"authors\":\"Haimyapriya Buragohain, Kaushik Talukdar, Malaya K. Nayak\",\"doi\":\"10.1007/s00214-024-03117-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We employ the four-component relativistic extended–coupled–cluster (ECC) method, a variational coupled–cluster (CC) approach, to compute the permanent electric dipole moment (PDM) of open-shell diatomic molecules (CaH, CaF, SrH and SrF) in their ground electronic state. The ECC results are compared with the PDM values estimated by the experiments as well as other single-reference CC-based approaches (the <i>Z</i>-vector technique, the expectation value method and the finite field approach) within the four-component relativistic framework to test the efficacy of the employed method. Our study reveals that the relativistic ECC method can yield reliable results for the PDMs of the considered molecular systems. We also observe that the computed results of the dipole moment improve upon the augmentation of diffused functions to the basis set.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00214-024-03117-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00214-024-03117-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Permanent electric dipole moment of diatomic molecules using relativistic extended–coupled–cluster method
We employ the four-component relativistic extended–coupled–cluster (ECC) method, a variational coupled–cluster (CC) approach, to compute the permanent electric dipole moment (PDM) of open-shell diatomic molecules (CaH, CaF, SrH and SrF) in their ground electronic state. The ECC results are compared with the PDM values estimated by the experiments as well as other single-reference CC-based approaches (the Z-vector technique, the expectation value method and the finite field approach) within the four-component relativistic framework to test the efficacy of the employed method. Our study reveals that the relativistic ECC method can yield reliable results for the PDMs of the considered molecular systems. We also observe that the computed results of the dipole moment improve upon the augmentation of diffused functions to the basis set.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.