克莱拉特共形浸没器

IF 1 3区 数学 Q1 MATHEMATICS
Kiran Meena, Tomasz Zawadzki
{"title":"克莱拉特共形浸没器","authors":"Kiran Meena, Tomasz Zawadzki","doi":"10.1007/s40840-024-01697-1","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to introduce Clairaut conformal submersions between Riemannian manifolds. First, we find necessary and sufficient conditions for conformal submersions to be Clairaut conformal submersions. In particular, we obtain Clairaut relation for geodesics on the total manifolds of conformal submersions, and prove that Clairaut conformal submersions have constant dilation along their fibers, which are totally umbilical, with mean curvature being gradient of a function. Further, we calculate the scalar and Ricci curvatures of the vertical distributions of the total manifolds. Moreover, we find a necessary and sufficient condition for Clairaut conformal submersions to be harmonic. For a Clairaut conformal submersion we find conformal changes of the metric on its domain or image, that give a Clairaut Riemannian submersion, a Clairaut conformal submersion with totally geodesic fibers, or a harmonic Clairaut submersion. Finally, we give two non-trivial examples of Clairaut conformal submersions to illustrate the theory and present a local model of every Clairaut conformal submersion with integrable horizontal distribution.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"49 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clairaut Conformal Submersions\",\"authors\":\"Kiran Meena, Tomasz Zawadzki\",\"doi\":\"10.1007/s40840-024-01697-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this paper is to introduce Clairaut conformal submersions between Riemannian manifolds. First, we find necessary and sufficient conditions for conformal submersions to be Clairaut conformal submersions. In particular, we obtain Clairaut relation for geodesics on the total manifolds of conformal submersions, and prove that Clairaut conformal submersions have constant dilation along their fibers, which are totally umbilical, with mean curvature being gradient of a function. Further, we calculate the scalar and Ricci curvatures of the vertical distributions of the total manifolds. Moreover, we find a necessary and sufficient condition for Clairaut conformal submersions to be harmonic. For a Clairaut conformal submersion we find conformal changes of the metric on its domain or image, that give a Clairaut Riemannian submersion, a Clairaut conformal submersion with totally geodesic fibers, or a harmonic Clairaut submersion. Finally, we give two non-trivial examples of Clairaut conformal submersions to illustrate the theory and present a local model of every Clairaut conformal submersion with integrable horizontal distribution.</p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01697-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01697-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在介绍黎曼流形之间的克莱拉特保角潜影。首先,我们找到了共形潜影成为 Clairaut 共形潜影的必要条件和充分条件。特别是,我们得到了共形潜影总流形上大地线的克莱拉特关系,并证明克莱拉特共形潜影沿其纤维具有恒定的扩张性,而这些纤维是完全脐形的,其平均曲率是一个函数的梯度。此外,我们还计算了总流形垂直分布的标量曲率和利玛窦曲率。此外,我们还发现了克莱劳特保形潜影是谐波的必要条件和充分条件。对于克莱拉特共形潜影,我们会发现其域或像上的度量的共形变化,从而得到克莱拉特黎曼潜影、具有完全大地纤维的克莱拉特共形潜影或谐波克莱拉特潜影。最后,我们给出了两个克莱拉特共形下沉的非难例来说明理论,并提出了每个具有可积分水平分布的克莱拉特共形下沉的局部模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clairaut Conformal Submersions

The aim of this paper is to introduce Clairaut conformal submersions between Riemannian manifolds. First, we find necessary and sufficient conditions for conformal submersions to be Clairaut conformal submersions. In particular, we obtain Clairaut relation for geodesics on the total manifolds of conformal submersions, and prove that Clairaut conformal submersions have constant dilation along their fibers, which are totally umbilical, with mean curvature being gradient of a function. Further, we calculate the scalar and Ricci curvatures of the vertical distributions of the total manifolds. Moreover, we find a necessary and sufficient condition for Clairaut conformal submersions to be harmonic. For a Clairaut conformal submersion we find conformal changes of the metric on its domain or image, that give a Clairaut Riemannian submersion, a Clairaut conformal submersion with totally geodesic fibers, or a harmonic Clairaut submersion. Finally, we give two non-trivial examples of Clairaut conformal submersions to illustrate the theory and present a local model of every Clairaut conformal submersion with integrable horizontal distribution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信