{"title":"具有饱和发病率的非局部扩散 SIS 流行病模型的渐近曲线","authors":"Yan-Xia Feng, Wan-Tong Li, Fei-Ying Yang","doi":"10.1017/prm.2024.62","DOIUrl":null,"url":null,"abstract":"<p>Infection mechanism plays a significant role in epidemic models. To investigate the influence of saturation effect, a nonlocal (convolution) dispersal susceptible-infected-susceptible epidemic model with saturated incidence is considered. We first study the impact of dispersal rates and total population size on the basic reproduction number. Yang, Li and Ruan (<span>J. Differ. Equ.</span> 267 (2019) 2011–2051) obtained the limit of basic reproduction number as the dispersal rate tends to zero or infinity under the condition that a corresponding weighted eigenvalue problem has a unique positive principal eigenvalue. We remove this additional condition by a different method, which enables us to reduce the problem on the limiting profile of the basic reproduction number into that of the spectral bound of the corresponding operator. Then we establish the existence and uniqueness of endemic steady states by a equivalent equation and finally investigate the asymptotic profiles of the endemic steady states for small and large diffusion rates to provide reference for disease prevention and control, in which the lack of regularity of the endemic steady state and Harnack inequality makes the limit function of the sequence of the endemic steady state hard to get. Finally, we find whether lowing the movements of susceptible individuals can eradicate the disease or not depends on not only the sign of the difference between the transmission rate and the recovery rate but also the total population size, which is different from that of the model with standard or bilinear incidence.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"41 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic profiles of a nonlocal dispersal SIS epidemic model with saturated incidence\",\"authors\":\"Yan-Xia Feng, Wan-Tong Li, Fei-Ying Yang\",\"doi\":\"10.1017/prm.2024.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Infection mechanism plays a significant role in epidemic models. To investigate the influence of saturation effect, a nonlocal (convolution) dispersal susceptible-infected-susceptible epidemic model with saturated incidence is considered. We first study the impact of dispersal rates and total population size on the basic reproduction number. Yang, Li and Ruan (<span>J. Differ. Equ.</span> 267 (2019) 2011–2051) obtained the limit of basic reproduction number as the dispersal rate tends to zero or infinity under the condition that a corresponding weighted eigenvalue problem has a unique positive principal eigenvalue. We remove this additional condition by a different method, which enables us to reduce the problem on the limiting profile of the basic reproduction number into that of the spectral bound of the corresponding operator. Then we establish the existence and uniqueness of endemic steady states by a equivalent equation and finally investigate the asymptotic profiles of the endemic steady states for small and large diffusion rates to provide reference for disease prevention and control, in which the lack of regularity of the endemic steady state and Harnack inequality makes the limit function of the sequence of the endemic steady state hard to get. Finally, we find whether lowing the movements of susceptible individuals can eradicate the disease or not depends on not only the sign of the difference between the transmission rate and the recovery rate but also the total population size, which is different from that of the model with standard or bilinear incidence.</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.62\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.62","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Asymptotic profiles of a nonlocal dispersal SIS epidemic model with saturated incidence
Infection mechanism plays a significant role in epidemic models. To investigate the influence of saturation effect, a nonlocal (convolution) dispersal susceptible-infected-susceptible epidemic model with saturated incidence is considered. We first study the impact of dispersal rates and total population size on the basic reproduction number. Yang, Li and Ruan (J. Differ. Equ. 267 (2019) 2011–2051) obtained the limit of basic reproduction number as the dispersal rate tends to zero or infinity under the condition that a corresponding weighted eigenvalue problem has a unique positive principal eigenvalue. We remove this additional condition by a different method, which enables us to reduce the problem on the limiting profile of the basic reproduction number into that of the spectral bound of the corresponding operator. Then we establish the existence and uniqueness of endemic steady states by a equivalent equation and finally investigate the asymptotic profiles of the endemic steady states for small and large diffusion rates to provide reference for disease prevention and control, in which the lack of regularity of the endemic steady state and Harnack inequality makes the limit function of the sequence of the endemic steady state hard to get. Finally, we find whether lowing the movements of susceptible individuals can eradicate the disease or not depends on not only the sign of the difference between the transmission rate and the recovery rate but also the total population size, which is different from that of the model with standard or bilinear incidence.
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.