双曲空间中的导线和最小旋转曲面

IF 1.3 3区 数学 Q1 MATHEMATICS
Luiz C. B. da Silva, Rafael López
{"title":"双曲空间中的导线和最小旋转曲面","authors":"Luiz C. B. da Silva, Rafael López","doi":"10.1017/prm.2024.56","DOIUrl":null,"url":null,"abstract":"We introduce the concept of extrinsic catenary in the hyperbolic plane. Working in the hyperboloid model, we define an extrinsic catenary as the shape of a curve hanging under its weight as seen from the ambient space. In other words, an extrinsic catenary is a critical point of the potential functional, where we calculate the potential with the extrinsic distance to a fixed reference plane in the ambient Lorentzian space. We then characterize extrinsic catenaries in terms of their curvature and as a solution to a prescribed curvature problem involving certain vector fields. In addition, we prove that the generating curve of any minimal surface of revolution in the hyperbolic space is an extrinsic catenary with respect to an appropriate reference plane. Finally, we prove that one of the families of extrinsic catenaries admits an intrinsic characterization if we replace the extrinsic distance with the intrinsic length of horocycles orthogonal to a reference geodesic.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"6 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catenaries and minimal surfaces of revolution in hyperbolic space\",\"authors\":\"Luiz C. B. da Silva, Rafael López\",\"doi\":\"10.1017/prm.2024.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the concept of extrinsic catenary in the hyperbolic plane. Working in the hyperboloid model, we define an extrinsic catenary as the shape of a curve hanging under its weight as seen from the ambient space. In other words, an extrinsic catenary is a critical point of the potential functional, where we calculate the potential with the extrinsic distance to a fixed reference plane in the ambient Lorentzian space. We then characterize extrinsic catenaries in terms of their curvature and as a solution to a prescribed curvature problem involving certain vector fields. In addition, we prove that the generating curve of any minimal surface of revolution in the hyperbolic space is an extrinsic catenary with respect to an appropriate reference plane. Finally, we prove that one of the families of extrinsic catenaries admits an intrinsic characterization if we replace the extrinsic distance with the intrinsic length of horocycles orthogonal to a reference geodesic.\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.56\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.56","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了双曲面上的外延导管概念。在双曲面模型中,我们将外力导管定义为从环境空间看悬挂在其重力下的曲线的形状。换句话说,外引力是势函数的一个临界点,在这里,我们用到环境洛伦兹空间中固定参考平面的外距离来计算势函数。然后,我们用曲率和涉及某些矢量场的规定曲率问题的解来描述外延导线的特征。此外,我们还证明了双曲空间中任何最小旋转曲面的生成曲线相对于适当的参考平面都是外延导线。最后,我们证明,如果我们用与参考大地水准面正交的角周期的本征长度来代替外征距离,那么外征双曲面的其中一个系列就可以得到本征特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catenaries and minimal surfaces of revolution in hyperbolic space
We introduce the concept of extrinsic catenary in the hyperbolic plane. Working in the hyperboloid model, we define an extrinsic catenary as the shape of a curve hanging under its weight as seen from the ambient space. In other words, an extrinsic catenary is a critical point of the potential functional, where we calculate the potential with the extrinsic distance to a fixed reference plane in the ambient Lorentzian space. We then characterize extrinsic catenaries in terms of their curvature and as a solution to a prescribed curvature problem involving certain vector fields. In addition, we prove that the generating curve of any minimal surface of revolution in the hyperbolic space is an extrinsic catenary with respect to an appropriate reference plane. Finally, we prove that one of the families of extrinsic catenaries admits an intrinsic characterization if we replace the extrinsic distance with the intrinsic length of horocycles orthogonal to a reference geodesic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信