{"title":"函数范畴中的平面模型结构和戈伦斯坦对象","authors":"Zhenxing Di, Liping Li, Li Liang, Yajun Ma","doi":"10.1017/prm.2024.60","DOIUrl":null,"url":null,"abstract":"<p>We construct a flat model structure on the category <span><span><span data-mathjax-type=\"texmath\"><span>${_{\\mathcal {Q},\\,R}\\mathsf {Mod}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline1.png\"/></span></span> of additive functors from a small preadditive category <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {Q}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline2.png\"/></span></span> satisfying certain conditions to the module category <span><span><span data-mathjax-type=\"texmath\"><span>${_{R}\\mathsf {Mod}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline3.png\"/></span></span> over an associative ring <span><span><span data-mathjax-type=\"texmath\"><span>$R$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline4.png\"/></span></span>, whose homotopy category is the <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {Q}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline5.png\"/></span></span>-shaped derived category introduced by Holm and Jørgensen. Moreover, we prove that for an arbitrary associative ring <span><span><span data-mathjax-type=\"texmath\"><span>$R$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline6.png\"/></span></span>, an object in <span><span><span data-mathjax-type=\"texmath\"><span>${_{\\mathcal {Q},\\,R}\\mathsf {Mod}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline7.png\"/></span></span> is Gorenstein projective (resp., Gorenstein injective, Gorenstein flat, projective coresolving Gorenstein flat) if and only if so is its value on each object of <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {Q}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline8.png\"/></span></span>, and hence improve a result by Dell'Ambrogio, Stevenson and Šťovíček.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"123 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flat model structures and Gorenstein objects in functor categories\",\"authors\":\"Zhenxing Di, Liping Li, Li Liang, Yajun Ma\",\"doi\":\"10.1017/prm.2024.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct a flat model structure on the category <span><span><span data-mathjax-type=\\\"texmath\\\"><span>${_{\\\\mathcal {Q},\\\\,R}\\\\mathsf {Mod}}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline1.png\\\"/></span></span> of additive functors from a small preadditive category <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {Q}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline2.png\\\"/></span></span> satisfying certain conditions to the module category <span><span><span data-mathjax-type=\\\"texmath\\\"><span>${_{R}\\\\mathsf {Mod}}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline3.png\\\"/></span></span> over an associative ring <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$R$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline4.png\\\"/></span></span>, whose homotopy category is the <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {Q}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline5.png\\\"/></span></span>-shaped derived category introduced by Holm and Jørgensen. Moreover, we prove that for an arbitrary associative ring <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$R$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline6.png\\\"/></span></span>, an object in <span><span><span data-mathjax-type=\\\"texmath\\\"><span>${_{\\\\mathcal {Q},\\\\,R}\\\\mathsf {Mod}}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline7.png\\\"/></span></span> is Gorenstein projective (resp., Gorenstein injective, Gorenstein flat, projective coresolving Gorenstein flat) if and only if so is its value on each object of <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {Q}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline8.png\\\"/></span></span>, and hence improve a result by Dell'Ambrogio, Stevenson and Šťovíček.</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.60\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.60","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Flat model structures and Gorenstein objects in functor categories
We construct a flat model structure on the category ${_{\mathcal {Q},\,R}\mathsf {Mod}}$ of additive functors from a small preadditive category $\mathcal {Q}$ satisfying certain conditions to the module category ${_{R}\mathsf {Mod}}$ over an associative ring $R$, whose homotopy category is the $\mathcal {Q}$-shaped derived category introduced by Holm and Jørgensen. Moreover, we prove that for an arbitrary associative ring $R$, an object in ${_{\mathcal {Q},\,R}\mathsf {Mod}}$ is Gorenstein projective (resp., Gorenstein injective, Gorenstein flat, projective coresolving Gorenstein flat) if and only if so is its value on each object of $\mathcal {Q}$, and hence improve a result by Dell'Ambrogio, Stevenson and Šťovíček.
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.