函数范畴中的平面模型结构和戈伦斯坦对象

IF 1.3 3区 数学 Q1 MATHEMATICS
Zhenxing Di, Liping Li, Li Liang, Yajun Ma
{"title":"函数范畴中的平面模型结构和戈伦斯坦对象","authors":"Zhenxing Di, Liping Li, Li Liang, Yajun Ma","doi":"10.1017/prm.2024.60","DOIUrl":null,"url":null,"abstract":"<p>We construct a flat model structure on the category <span><span><span data-mathjax-type=\"texmath\"><span>${_{\\mathcal {Q},\\,R}\\mathsf {Mod}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline1.png\"/></span></span> of additive functors from a small preadditive category <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {Q}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline2.png\"/></span></span> satisfying certain conditions to the module category <span><span><span data-mathjax-type=\"texmath\"><span>${_{R}\\mathsf {Mod}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline3.png\"/></span></span> over an associative ring <span><span><span data-mathjax-type=\"texmath\"><span>$R$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline4.png\"/></span></span>, whose homotopy category is the <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {Q}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline5.png\"/></span></span>-shaped derived category introduced by Holm and Jørgensen. Moreover, we prove that for an arbitrary associative ring <span><span><span data-mathjax-type=\"texmath\"><span>$R$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline6.png\"/></span></span>, an object in <span><span><span data-mathjax-type=\"texmath\"><span>${_{\\mathcal {Q},\\,R}\\mathsf {Mod}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline7.png\"/></span></span> is Gorenstein projective (resp., Gorenstein injective, Gorenstein flat, projective coresolving Gorenstein flat) if and only if so is its value on each object of <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {Q}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline8.png\"/></span></span>, and hence improve a result by Dell'Ambrogio, Stevenson and Šťovíček.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"123 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flat model structures and Gorenstein objects in functor categories\",\"authors\":\"Zhenxing Di, Liping Li, Li Liang, Yajun Ma\",\"doi\":\"10.1017/prm.2024.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct a flat model structure on the category <span><span><span data-mathjax-type=\\\"texmath\\\"><span>${_{\\\\mathcal {Q},\\\\,R}\\\\mathsf {Mod}}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline1.png\\\"/></span></span> of additive functors from a small preadditive category <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {Q}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline2.png\\\"/></span></span> satisfying certain conditions to the module category <span><span><span data-mathjax-type=\\\"texmath\\\"><span>${_{R}\\\\mathsf {Mod}}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline3.png\\\"/></span></span> over an associative ring <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$R$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline4.png\\\"/></span></span>, whose homotopy category is the <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {Q}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline5.png\\\"/></span></span>-shaped derived category introduced by Holm and Jørgensen. Moreover, we prove that for an arbitrary associative ring <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$R$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline6.png\\\"/></span></span>, an object in <span><span><span data-mathjax-type=\\\"texmath\\\"><span>${_{\\\\mathcal {Q},\\\\,R}\\\\mathsf {Mod}}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline7.png\\\"/></span></span> is Gorenstein projective (resp., Gorenstein injective, Gorenstein flat, projective coresolving Gorenstein flat) if and only if so is its value on each object of <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {Q}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513183242284-0041:S030821052400060X:S030821052400060X_inline8.png\\\"/></span></span>, and hence improve a result by Dell'Ambrogio, Stevenson and Šťovíček.</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.60\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.60","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们在从满足特定条件的小前加法范畴 ${{mathcal {Q}$ 到关联环 $R$ 上的模块范畴 ${{R}\mathsf {Mod}}$ 的加法函数范畴 ${{mathcal {Q},\,R}\mathsf {Mod}}$ 上构建了一个平面模型结构,其同调范畴是霍尔姆和约根森引入的 $\mathcal {Q}$ 形派生范畴。此外,我们证明了对于任意关联环 $R$,当且仅当 ${_{mathcal {Q},\,R}mathsf {Mod}$ 中的对象在 ${_{mathcal {Q},\,R}mathsf {Mod}}$ 的每个对象上的值都是如此时,${_{mathcal {Q},\,R}mathsf {Mod}}$ 中的对象是戈伦斯坦投影的(或者说,戈伦斯坦注入的、戈伦斯坦平面的、投影核解戈伦斯坦平面的),并因此改进了戴尔安布罗吉奥、史蒂文森和 Šťovíček 的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flat model structures and Gorenstein objects in functor categories

We construct a flat model structure on the category ${_{\mathcal {Q},\,R}\mathsf {Mod}}$ of additive functors from a small preadditive category $\mathcal {Q}$ satisfying certain conditions to the module category ${_{R}\mathsf {Mod}}$ over an associative ring $R$, whose homotopy category is the $\mathcal {Q}$-shaped derived category introduced by Holm and Jørgensen. Moreover, we prove that for an arbitrary associative ring $R$, an object in ${_{\mathcal {Q},\,R}\mathsf {Mod}}$ is Gorenstein projective (resp., Gorenstein injective, Gorenstein flat, projective coresolving Gorenstein flat) if and only if so is its value on each object of $\mathcal {Q}$, and hence improve a result by Dell'Ambrogio, Stevenson and Šťovíček.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信