{"title":"关于单位球面上的保角平坦极小传奇子平面","authors":"Cece Li, Cheng Xing, Jiabin Yin","doi":"10.1017/prm.2024.57","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the study on an open problem of classifying conformally flat minimal Legendrian submanifolds in the <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(2n+1)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400057X_inline1.png\"/> </jats:alternatives> </jats:inline-formula>-dimensional unit sphere <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\mathbb {S}^{2n+1}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400057X_inline2.png\"/> </jats:alternatives> </jats:inline-formula> admitting a Sasakian structure <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(\\varphi,\\,\\xi,\\,\\eta,\\,g)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400057X_inline3.png\"/> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:tex-math>$n\\ge 3$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400057X_inline4.png\"/> </jats:alternatives> </jats:inline-formula>, motivated by the classification of minimal Legendrian submanifolds with constant sectional curvature. First of all, we completely classify such Legendrian submanifolds by assuming that the tensor <jats:inline-formula> <jats:alternatives> <jats:tex-math>$K:=-\\varphi h$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400057X_inline5.png\"/> </jats:alternatives> </jats:inline-formula> is semi-parallel, which is introduced as a natural extension of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$C$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400057X_inline6.png\"/> </jats:alternatives> </jats:inline-formula>-parallel second fundamental form <jats:inline-formula> <jats:alternatives> <jats:tex-math>$h$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400057X_inline7.png\"/> </jats:alternatives> </jats:inline-formula>. Secondly, such submanifolds have also been determined under the condition that the Ricci tensor is semi-parallel, generalizing the Einstein condition. Finally, as direct consequences, new characterizations of the Calabi torus are presented.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"66 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On conformally flat minimal Legendrian submanifolds in the unit sphere\",\"authors\":\"Cece Li, Cheng Xing, Jiabin Yin\",\"doi\":\"10.1017/prm.2024.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the study on an open problem of classifying conformally flat minimal Legendrian submanifolds in the <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(2n+1)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400057X_inline1.png\\\"/> </jats:alternatives> </jats:inline-formula>-dimensional unit sphere <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\mathbb {S}^{2n+1}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400057X_inline2.png\\\"/> </jats:alternatives> </jats:inline-formula> admitting a Sasakian structure <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(\\\\varphi,\\\\,\\\\xi,\\\\,\\\\eta,\\\\,g)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400057X_inline3.png\\\"/> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:tex-math>$n\\\\ge 3$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400057X_inline4.png\\\"/> </jats:alternatives> </jats:inline-formula>, motivated by the classification of minimal Legendrian submanifolds with constant sectional curvature. First of all, we completely classify such Legendrian submanifolds by assuming that the tensor <jats:inline-formula> <jats:alternatives> <jats:tex-math>$K:=-\\\\varphi h$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400057X_inline5.png\\\"/> </jats:alternatives> </jats:inline-formula> is semi-parallel, which is introduced as a natural extension of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$C$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400057X_inline6.png\\\"/> </jats:alternatives> </jats:inline-formula>-parallel second fundamental form <jats:inline-formula> <jats:alternatives> <jats:tex-math>$h$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400057X_inline7.png\\\"/> </jats:alternatives> </jats:inline-formula>. Secondly, such submanifolds have also been determined under the condition that the Ricci tensor is semi-parallel, generalizing the Einstein condition. Finally, as direct consequences, new characterizations of the Calabi torus are presented.\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.57\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.57","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On conformally flat minimal Legendrian submanifolds in the unit sphere
This paper is concerned with the study on an open problem of classifying conformally flat minimal Legendrian submanifolds in the $(2n+1)$-dimensional unit sphere $\mathbb {S}^{2n+1}$ admitting a Sasakian structure $(\varphi,\,\xi,\,\eta,\,g)$ for $n\ge 3$, motivated by the classification of minimal Legendrian submanifolds with constant sectional curvature. First of all, we completely classify such Legendrian submanifolds by assuming that the tensor $K:=-\varphi h$ is semi-parallel, which is introduced as a natural extension of $C$-parallel second fundamental form $h$. Secondly, such submanifolds have also been determined under the condition that the Ricci tensor is semi-parallel, generalizing the Einstein condition. Finally, as direct consequences, new characterizations of the Calabi torus are presented.
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.