利用 rGO-Bi2S3/CuO 异质结光催化剂还原二氧化碳,提高甲醇产量

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Arindam Mandal, Guruprasad Bhattacharya, Kajari Kargupta
{"title":"利用 rGO-Bi2S3/CuO 异质结光催化剂还原二氧化碳,提高甲醇产量","authors":"Arindam Mandal, Guruprasad Bhattacharya, Kajari Kargupta","doi":"10.1557/s43578-024-01352-2","DOIUrl":null,"url":null,"abstract":"<p>A visible light-induced rGO-Bi<sub>2</sub>S<sub>3</sub>/CuO S-scheme heterojunction photocatalyst is explored for the production of methanol and formic acid through photocatalytic CO<sub>2</sub> reduction. In this work, the effect of CuO loading on rGO-Bi<sub>2</sub>S<sub>3</sub> nano-hollow flower composite are investigated to improve the yield and selectivity of methanol production. The synthesised rGO-Bi<sub>2</sub>S<sub>3</sub>/CuO nanocomposite, being a highly efficient and robust photocatalyst, exhibits the maximum methanol yield of 423.52 μmol g<sub>cat.</sub><sup>−1</sup> h<sup>−1</sup> along with formic acid. CuO loading on rGO-Bi<sub>2</sub>S<sub>3</sub> is responsible for achieving the maximum photocatalytic activity of the rGO-Bi<sub>2</sub>S<sub>3</sub>/CuO photocatalyst, the narrowest band gap, the lowest recombination rate of electron–hole pairs, and the increased specific surface area for CO<sub>2</sub> capture among all the related photocatalysts, rGO-Bi<sub>2</sub>S<sub>3</sub>, pristine Bi<sub>2</sub>S<sub>3</sub>, and Bi<sub>2</sub>S<sub>3</sub>/CuO nanocomposite. The selectivity of methanol is improved to 98.6% by the rGO-Bi<sub>2</sub>S<sub>3</sub>/CuO heterojunction photocatalyst. The absorption edge (652.4 nm) of the rGO-Bi<sub>2</sub>S<sub>3</sub>/CuO photocatalyst clearly exhibits outstanding visible light absorption and enhanced photo carrier transportation power.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":"23 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced yield of methanol using rGO-Bi2S3/CuO heterojunction photocatalyst for CO2 reduction\",\"authors\":\"Arindam Mandal, Guruprasad Bhattacharya, Kajari Kargupta\",\"doi\":\"10.1557/s43578-024-01352-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A visible light-induced rGO-Bi<sub>2</sub>S<sub>3</sub>/CuO S-scheme heterojunction photocatalyst is explored for the production of methanol and formic acid through photocatalytic CO<sub>2</sub> reduction. In this work, the effect of CuO loading on rGO-Bi<sub>2</sub>S<sub>3</sub> nano-hollow flower composite are investigated to improve the yield and selectivity of methanol production. The synthesised rGO-Bi<sub>2</sub>S<sub>3</sub>/CuO nanocomposite, being a highly efficient and robust photocatalyst, exhibits the maximum methanol yield of 423.52 μmol g<sub>cat.</sub><sup>−1</sup> h<sup>−1</sup> along with formic acid. CuO loading on rGO-Bi<sub>2</sub>S<sub>3</sub> is responsible for achieving the maximum photocatalytic activity of the rGO-Bi<sub>2</sub>S<sub>3</sub>/CuO photocatalyst, the narrowest band gap, the lowest recombination rate of electron–hole pairs, and the increased specific surface area for CO<sub>2</sub> capture among all the related photocatalysts, rGO-Bi<sub>2</sub>S<sub>3</sub>, pristine Bi<sub>2</sub>S<sub>3</sub>, and Bi<sub>2</sub>S<sub>3</sub>/CuO nanocomposite. The selectivity of methanol is improved to 98.6% by the rGO-Bi<sub>2</sub>S<sub>3</sub>/CuO heterojunction photocatalyst. The absorption edge (652.4 nm) of the rGO-Bi<sub>2</sub>S<sub>3</sub>/CuO photocatalyst clearly exhibits outstanding visible light absorption and enhanced photo carrier transportation power.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":16306,\"journal\":{\"name\":\"Journal of Materials Research\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43578-024-01352-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01352-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探索了一种可见光诱导的 rGO-Bi2S3/CuO S 型异质结光催化剂,用于通过光催化二氧化碳还原生产甲醇和甲酸。在这项工作中,研究了 CuO 在 rGO-Bi2S3 纳米空心花复合材料上负载的影响,以提高甲醇生产的产率和选择性。合成的 rGO-Bi2S3/CuO 纳米复合材料是一种高效、坚固的光催化剂,它与甲酸的甲醇产率最高,达到 423.52 μmol gcat.-1 h-1。在 rGO-Bi2S3、原始 Bi2S3 和 Bi2S3/CuO 纳米复合材料等所有相关光催化剂中,rGO-Bi2S3/CuO 光催化剂的光催化活性最高,带隙最窄,电子-空穴对重组率最低,捕获二氧化碳的比表面积增大。rGO-Bi2S3/CuO 异质结光催化剂对甲醇的选择性提高到 98.6%。rGO-Bi2S3/CuO光催化剂的吸收边缘(652.4 nm)明显表现出对可见光的出色吸收和更强的光载流子传输能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced yield of methanol using rGO-Bi2S3/CuO heterojunction photocatalyst for CO2 reduction

Enhanced yield of methanol using rGO-Bi2S3/CuO heterojunction photocatalyst for CO2 reduction

A visible light-induced rGO-Bi2S3/CuO S-scheme heterojunction photocatalyst is explored for the production of methanol and formic acid through photocatalytic CO2 reduction. In this work, the effect of CuO loading on rGO-Bi2S3 nano-hollow flower composite are investigated to improve the yield and selectivity of methanol production. The synthesised rGO-Bi2S3/CuO nanocomposite, being a highly efficient and robust photocatalyst, exhibits the maximum methanol yield of 423.52 μmol gcat.−1 h−1 along with formic acid. CuO loading on rGO-Bi2S3 is responsible for achieving the maximum photocatalytic activity of the rGO-Bi2S3/CuO photocatalyst, the narrowest band gap, the lowest recombination rate of electron–hole pairs, and the increased specific surface area for CO2 capture among all the related photocatalysts, rGO-Bi2S3, pristine Bi2S3, and Bi2S3/CuO nanocomposite. The selectivity of methanol is improved to 98.6% by the rGO-Bi2S3/CuO heterojunction photocatalyst. The absorption edge (652.4 nm) of the rGO-Bi2S3/CuO photocatalyst clearly exhibits outstanding visible light absorption and enhanced photo carrier transportation power.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Research
Journal of Materials Research 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.70%
发文量
362
审稿时长
2.8 months
期刊介绍: Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome. • Novel materials discovery • Electronic, photonic and magnetic materials • Energy Conversion and storage materials • New thermal and structural materials • Soft materials • Biomaterials and related topics • Nanoscale science and technology • Advances in materials characterization methods and techniques • Computational materials science, modeling and theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信