基于光谱和图像信息组合的大豆皂素含量检测

IF 1.7 4区 化学 Q4 BIOCHEMICAL RESEARCH METHODS
Hongmin Sun, Xifan Meng, Yingpeng Han, Xiao Li, Xiaoming Li, Yongguang Li
{"title":"基于光谱和图像信息组合的大豆皂素含量检测","authors":"Hongmin Sun, Xifan Meng, Yingpeng Han, Xiao Li, Xiaoming Li, Yongguang Li","doi":"10.1155/2024/7599132","DOIUrl":null,"url":null,"abstract":"Soybean saponin is a natural antioxidant and is anti-inflammatory. Hyperspectral analysis technology was applied to detect soybean saponin content rapidly and nondestructively in this paper. Firstly, spectral preprocessing methods were studied, and standard normal variable (SNV) was used to remove noise information. Secondly, a two-step hybrid variable selection approach based on synergy interval partial least squares (SiPLS) and iteratively retains informative variables (IRIV) was proposed to extract characteristic variables. Then, the ensemble learning model was constructed by back propagation neural network (BPNN), deep forest (DF), partial least squares regression (PLSR), and extreme gradient boosting (EXG). Finally, image information was combined into spectral data to improve model accuracy. The prediction coefficient of determination (<span><svg height=\"11.7978pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 13.2276 11.7978\" width=\"13.2276pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.151,-5.741)\"></path></g></svg>)</span> of the final model reached 0.9216. It can provide rapid, nondestructive, and accurate detection technology of soybean saponin content. A combination of spectral and image information will provide a new idea for application of hyperspectral.","PeriodicalId":17079,"journal":{"name":"Journal of Spectroscopy","volume":"107 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soybean Saponin Content Detection Based on Spectral and Image Information Combination\",\"authors\":\"Hongmin Sun, Xifan Meng, Yingpeng Han, Xiao Li, Xiaoming Li, Yongguang Li\",\"doi\":\"10.1155/2024/7599132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soybean saponin is a natural antioxidant and is anti-inflammatory. Hyperspectral analysis technology was applied to detect soybean saponin content rapidly and nondestructively in this paper. Firstly, spectral preprocessing methods were studied, and standard normal variable (SNV) was used to remove noise information. Secondly, a two-step hybrid variable selection approach based on synergy interval partial least squares (SiPLS) and iteratively retains informative variables (IRIV) was proposed to extract characteristic variables. Then, the ensemble learning model was constructed by back propagation neural network (BPNN), deep forest (DF), partial least squares regression (PLSR), and extreme gradient boosting (EXG). Finally, image information was combined into spectral data to improve model accuracy. The prediction coefficient of determination (<span><svg height=\\\"11.7978pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.5914 13.2276 11.7978\\\" width=\\\"13.2276pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.151,-5.741)\\\"></path></g></svg>)</span> of the final model reached 0.9216. It can provide rapid, nondestructive, and accurate detection technology of soybean saponin content. A combination of spectral and image information will provide a new idea for application of hyperspectral.\",\"PeriodicalId\":17079,\"journal\":{\"name\":\"Journal of Spectroscopy\",\"volume\":\"107 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/7599132\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2024/7599132","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

大豆皂素是一种天然抗氧化剂,具有消炎作用。本文应用高光谱分析技术快速、无损地检测大豆皂苷的含量。首先,研究了光谱预处理方法,采用标准正态变量(SNV)去除噪声信息。其次,提出了基于协同区间偏最小二乘法(SiPLS)和迭代保留信息变量(IRIV)的两步混合变量选择方法,以提取特征变量。然后,通过反向传播神经网络(BPNN)、深度森林(DF)、偏最小二乘回归(PLSR)和极梯度提升(EXG)构建了集合学习模型。最后,将图像信息与光谱数据相结合,以提高模型的准确性。最终模型的预测决定系数()达到 0.9216。它可以提供快速、无损、准确的大豆皂苷含量检测技术。光谱信息与图像信息的结合将为高光谱的应用提供新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soybean Saponin Content Detection Based on Spectral and Image Information Combination
Soybean saponin is a natural antioxidant and is anti-inflammatory. Hyperspectral analysis technology was applied to detect soybean saponin content rapidly and nondestructively in this paper. Firstly, spectral preprocessing methods were studied, and standard normal variable (SNV) was used to remove noise information. Secondly, a two-step hybrid variable selection approach based on synergy interval partial least squares (SiPLS) and iteratively retains informative variables (IRIV) was proposed to extract characteristic variables. Then, the ensemble learning model was constructed by back propagation neural network (BPNN), deep forest (DF), partial least squares regression (PLSR), and extreme gradient boosting (EXG). Finally, image information was combined into spectral data to improve model accuracy. The prediction coefficient of determination () of the final model reached 0.9216. It can provide rapid, nondestructive, and accurate detection technology of soybean saponin content. A combination of spectral and image information will provide a new idea for application of hyperspectral.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spectroscopy
Journal of Spectroscopy BIOCHEMICAL RESEARCH METHODS-SPECTROSCOPY
CiteScore
3.00
自引率
0.00%
发文量
37
审稿时长
15 weeks
期刊介绍: Journal of Spectroscopy (formerly titled Spectroscopy: An International Journal) is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信