多集排列的乌兰-哈默斯利问题

IF 0.6 3区 数学 Q3 MATHEMATICS
LUCAS GERIN
{"title":"多集排列的乌兰-哈默斯利问题","authors":"LUCAS GERIN","doi":"10.1017/s0305004124000124","DOIUrl":null,"url":null,"abstract":"We obtain the asymptotic behaviour of the longest increasing/non-decreasing subsequences in a random uniform multiset permutation in which each element in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000124_inline1.png\"/> <jats:tex-math> $\\{1,\\dots,n\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> occurs <jats:italic>k</jats:italic> times, where <jats:italic>k</jats:italic> may depend on <jats:italic>n</jats:italic>. This generalises the famous Ulam–Hammersley problem of the case <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000124_inline2.png\"/> <jats:tex-math> $k=1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The proof relies on poissonisation and on a careful non-asymptotic analysis of variants of the Hammersley–Aldous–Diaconis particle system.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Ulam–Hammersley problem for multiset permutations\",\"authors\":\"LUCAS GERIN\",\"doi\":\"10.1017/s0305004124000124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain the asymptotic behaviour of the longest increasing/non-decreasing subsequences in a random uniform multiset permutation in which each element in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0305004124000124_inline1.png\\\"/> <jats:tex-math> $\\\\{1,\\\\dots,n\\\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> occurs <jats:italic>k</jats:italic> times, where <jats:italic>k</jats:italic> may depend on <jats:italic>n</jats:italic>. This generalises the famous Ulam–Hammersley problem of the case <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0305004124000124_inline2.png\\\"/> <jats:tex-math> $k=1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The proof relies on poissonisation and on a careful non-asymptotic analysis of variants of the Hammersley–Aldous–Diaconis particle system.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0305004124000124\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0305004124000124","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了随机均匀多集排列中最长递增/非递减子序列的渐近行为,其中 $\{1,\dots,n\}$ 中的每个元素都出现了 k 次,其中 k 可能取决于 n。证明依赖于泊松化和对哈默斯利-阿尔都斯-迪亚科尼斯粒子系统变体的仔细非渐进分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Ulam–Hammersley problem for multiset permutations
We obtain the asymptotic behaviour of the longest increasing/non-decreasing subsequences in a random uniform multiset permutation in which each element in $\{1,\dots,n\}$ occurs k times, where k may depend on n. This generalises the famous Ulam–Hammersley problem of the case $k=1$ . The proof relies on poissonisation and on a careful non-asymptotic analysis of variants of the Hammersley–Aldous–Diaconis particle system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信