{"title":"基于交互深度探测器的大视场双粒子时间编码成像仪的设计与性能评估","authors":"Dong Zhao, Xu-Wen Liang, Ping-Kun Cai, Wei Cheng, Wen-Bao Jia, Da-Qian Hei, Qing Shan, Yong-Sheng Ling, Chao Shi","doi":"10.1007/s41365-024-01416-2","DOIUrl":null,"url":null,"abstract":"<p>Time-encoded imaging is useful for identifying potential special nuclear materials and other radioactive sources at a distance. In this study, a large field-of-view time-encoded imager was developed for gamma-ray and neutron source hotspot imaging based on a depth-of-interaction (DOI) detector. The imager primarily consists of a DOI detector system and a rotary dual-layer cylindrical coded mask. An EJ276 plastic scintillator coupled with two SiPMs was designed as the DOI detector to increase the field of view and improve the imager performance. The difference in signal time at both ends and the log of the signal amplitude ratio were used to calculate the interaction position resolution. The position resolution of the DOI detector was calibrated using a collimated Cs-137 source, and the full width at half maximum of the reconstruction position of the Gaussian fitting curve was approximately 4.4 cm. The DOI detector can be arbitrarily divided into several units to independently reconstruct the source distribution images. The unit length was optimized via Am-Be source-location experiments. A multidetector filtering method is proposed for image denoising. This method can effectively reduce image noise caused by poor DOI detector position resolution. The vertical field of view of the imager was (− 55°, 55°) when the detector was placed in the center of the coded mask. A DT neutron source at 20 m standoff could be located within 2400 s with an angular resolution of 3.5°.</p>","PeriodicalId":19177,"journal":{"name":"Nuclear Science and Techniques","volume":"2 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and performance evaluation of a large field-of-view dual-particle time-encoded imager based on a depth-of-interaction detector\",\"authors\":\"Dong Zhao, Xu-Wen Liang, Ping-Kun Cai, Wei Cheng, Wen-Bao Jia, Da-Qian Hei, Qing Shan, Yong-Sheng Ling, Chao Shi\",\"doi\":\"10.1007/s41365-024-01416-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Time-encoded imaging is useful for identifying potential special nuclear materials and other radioactive sources at a distance. In this study, a large field-of-view time-encoded imager was developed for gamma-ray and neutron source hotspot imaging based on a depth-of-interaction (DOI) detector. The imager primarily consists of a DOI detector system and a rotary dual-layer cylindrical coded mask. An EJ276 plastic scintillator coupled with two SiPMs was designed as the DOI detector to increase the field of view and improve the imager performance. The difference in signal time at both ends and the log of the signal amplitude ratio were used to calculate the interaction position resolution. The position resolution of the DOI detector was calibrated using a collimated Cs-137 source, and the full width at half maximum of the reconstruction position of the Gaussian fitting curve was approximately 4.4 cm. The DOI detector can be arbitrarily divided into several units to independently reconstruct the source distribution images. The unit length was optimized via Am-Be source-location experiments. A multidetector filtering method is proposed for image denoising. This method can effectively reduce image noise caused by poor DOI detector position resolution. The vertical field of view of the imager was (− 55°, 55°) when the detector was placed in the center of the coded mask. A DT neutron source at 20 m standoff could be located within 2400 s with an angular resolution of 3.5°.</p>\",\"PeriodicalId\":19177,\"journal\":{\"name\":\"Nuclear Science and Techniques\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Science and Techniques\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s41365-024-01416-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Science and Techniques","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s41365-024-01416-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
时间编码成像技术可用于远距离识别潜在的特殊核材料和其他放射源。在这项研究中,开发了一种基于相互作用深度(DOI)探测器的大视场时间编码成像仪,用于伽马射线和中子源热点成像。该成像仪主要由一个 DOI 探测器系统和一个旋转式双层圆柱形编码掩模组成。为增加视场和提高成像仪性能,设计了一个与两个 SiPM 相结合的 EJ276 塑料闪烁体作为 DOI 探测器。两端的信号时间差和信号振幅比对数被用来计算相互作用的位置分辨率。使用准直铯-137 源校准了 DOI 探测器的位置分辨率,高斯拟合曲线重建位置的半最大全宽约为 4.4 厘米。DOI 探测器可任意分为多个单元,以独立重建源分布图像。单元长度通过 Am-Be 源定位实验进行了优化。提出了一种用于图像去噪的多探测器滤波方法。该方法可有效降低因 DOI 探测器位置分辨率低而导致的图像噪声。当探测器置于编码掩模中心时,成像仪的垂直视场为(- 55°,55°)。可以在 2400 秒内定位距离为 20 米的 DT 中子源,角度分辨率为 3.5°。
Design and performance evaluation of a large field-of-view dual-particle time-encoded imager based on a depth-of-interaction detector
Time-encoded imaging is useful for identifying potential special nuclear materials and other radioactive sources at a distance. In this study, a large field-of-view time-encoded imager was developed for gamma-ray and neutron source hotspot imaging based on a depth-of-interaction (DOI) detector. The imager primarily consists of a DOI detector system and a rotary dual-layer cylindrical coded mask. An EJ276 plastic scintillator coupled with two SiPMs was designed as the DOI detector to increase the field of view and improve the imager performance. The difference in signal time at both ends and the log of the signal amplitude ratio were used to calculate the interaction position resolution. The position resolution of the DOI detector was calibrated using a collimated Cs-137 source, and the full width at half maximum of the reconstruction position of the Gaussian fitting curve was approximately 4.4 cm. The DOI detector can be arbitrarily divided into several units to independently reconstruct the source distribution images. The unit length was optimized via Am-Be source-location experiments. A multidetector filtering method is proposed for image denoising. This method can effectively reduce image noise caused by poor DOI detector position resolution. The vertical field of view of the imager was (− 55°, 55°) when the detector was placed in the center of the coded mask. A DT neutron source at 20 m standoff could be located within 2400 s with an angular resolution of 3.5°.
期刊介绍:
Nuclear Science and Techniques (NST) reports scientific findings, technical advances and important results in the fields of nuclear science and techniques. The aim of this periodical is to stimulate cross-fertilization of knowledge among scientists and engineers working in the fields of nuclear research.
Scope covers the following subjects:
• Synchrotron radiation applications, beamline technology;
• Accelerator, ray technology and applications;
• Nuclear chemistry, radiochemistry, radiopharmaceuticals, nuclear medicine;
• Nuclear electronics and instrumentation;
• Nuclear physics and interdisciplinary research;
• Nuclear energy science and engineering.