基于多尺度分析的多孔介质断裂周动力学模拟

IF 2.9 3区 工程技术 Q2 ENGINEERING, CIVIL
Zihao Yang, Shangkun Shen, Xiaofei Guan, Xindang He, Junzhi Cui
{"title":"基于多尺度分析的多孔介质断裂周动力学模拟","authors":"Zihao Yang, Shangkun Shen, Xiaofei Guan, Xindang He, Junzhi Cui","doi":"10.1007/s11709-024-1043-9","DOIUrl":null,"url":null,"abstract":"<p>The simulation of fracture in large-scale structures made of porous media remains a challenging task. Current techniques either assume a homogeneous model, disregarding the microstructure characteristics, or adopt a micro-mechanical model, which incurs an intractable computational cost due to its complex stochastic geometry and physical properties, as well as its nonlinear and multiscale features. In this study, we propose a multiscale analysis-based dual-variable-horizon peridynamics (PD) model to efficiently simulate macroscopic structural fracture. The influence of microstructures in porous media on macroscopic structural failure is represented by two PD parameters: the equivalent critical stretch and micro-modulus. The equivalent critical stretch is calculated using the microscale PD model, while the equivalent micro-modulus is obtained through the homogenization method and energy density equivalence between classical continuum mechanics and PD models. Numerical examples of porous media with various microstructures demonstrate the validity, accuracy, and efficiency of the proposed method.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"65 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale analysis-based peridynamic simulation of fracture in porous media\",\"authors\":\"Zihao Yang, Shangkun Shen, Xiaofei Guan, Xindang He, Junzhi Cui\",\"doi\":\"10.1007/s11709-024-1043-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The simulation of fracture in large-scale structures made of porous media remains a challenging task. Current techniques either assume a homogeneous model, disregarding the microstructure characteristics, or adopt a micro-mechanical model, which incurs an intractable computational cost due to its complex stochastic geometry and physical properties, as well as its nonlinear and multiscale features. In this study, we propose a multiscale analysis-based dual-variable-horizon peridynamics (PD) model to efficiently simulate macroscopic structural fracture. The influence of microstructures in porous media on macroscopic structural failure is represented by two PD parameters: the equivalent critical stretch and micro-modulus. The equivalent critical stretch is calculated using the microscale PD model, while the equivalent micro-modulus is obtained through the homogenization method and energy density equivalence between classical continuum mechanics and PD models. Numerical examples of porous media with various microstructures demonstrate the validity, accuracy, and efficiency of the proposed method.</p>\",\"PeriodicalId\":12476,\"journal\":{\"name\":\"Frontiers of Structural and Civil Engineering\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Structural and Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11709-024-1043-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1043-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

模拟多孔介质大型结构的断裂仍然是一项具有挑战性的任务。目前的技术要么假设均质模型,忽略微观结构特征,要么采用微观力学模型,而微观力学模型由于其复杂的随机几何和物理特性,以及非线性和多尺度特征,会产生难以承受的计算成本。在本研究中,我们提出了一种基于多尺度分析的双变量水平周动力学(PD)模型,以有效模拟宏观结构断裂。多孔介质中的微结构对宏观结构断裂的影响由两个 PD 参数表示:等效临界拉伸和微模量。等效临界拉伸使用微尺度 PD 模型计算,而等效微模量则通过经典连续介质力学和 PD 模型之间的均质化方法和能量密度等效获得。具有各种微结构的多孔介质的数值实例证明了所提方法的有效性、准确性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale analysis-based peridynamic simulation of fracture in porous media

The simulation of fracture in large-scale structures made of porous media remains a challenging task. Current techniques either assume a homogeneous model, disregarding the microstructure characteristics, or adopt a micro-mechanical model, which incurs an intractable computational cost due to its complex stochastic geometry and physical properties, as well as its nonlinear and multiscale features. In this study, we propose a multiscale analysis-based dual-variable-horizon peridynamics (PD) model to efficiently simulate macroscopic structural fracture. The influence of microstructures in porous media on macroscopic structural failure is represented by two PD parameters: the equivalent critical stretch and micro-modulus. The equivalent critical stretch is calculated using the microscale PD model, while the equivalent micro-modulus is obtained through the homogenization method and energy density equivalence between classical continuum mechanics and PD models. Numerical examples of porous media with various microstructures demonstrate the validity, accuracy, and efficiency of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.30%
发文量
734
期刊介绍: Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信