{"title":"分数布朗运动驱动的非线性随机微分方程的配位法及其在数学金融中的应用","authors":"P. K. Singh, S. Saha Ray","doi":"10.1007/s11009-024-10087-w","DOIUrl":null,"url":null,"abstract":"<p>The main aim of this article is to demonstrate the collocation method based on the barycentric rational interpolation function to solve nonlinear stochastic differential equations driven by fractional Brownian motion. First of all, the corresponding integral form of the nonlinear stochastic differential equations driven by fractional Brownian motion is introduced. Then, collocation points followed by the Gauss-quadrature formula and Simpson’s quadrature method are used to reduce them into a system of algebraic equations. Finally, the approximate solution is obtained using Newton’s method. The rigorous convergence and error analysis of the presented method has been discussed in detail. The proposed method has been applied to some well-known stochastic models, such as the stock model and a few other examples, to demonstrate the applicability and plausibility of the discussed method. Also, the numerical results of the collocation method based on the barycentric rational interpolation function and barycentric Lagrange interpolation function get compared with an exact solution.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Collocation Method for Nonlinear Stochastic Differential Equations Driven by Fractional Brownian Motion and its Application to Mathematical Finance\",\"authors\":\"P. K. Singh, S. Saha Ray\",\"doi\":\"10.1007/s11009-024-10087-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The main aim of this article is to demonstrate the collocation method based on the barycentric rational interpolation function to solve nonlinear stochastic differential equations driven by fractional Brownian motion. First of all, the corresponding integral form of the nonlinear stochastic differential equations driven by fractional Brownian motion is introduced. Then, collocation points followed by the Gauss-quadrature formula and Simpson’s quadrature method are used to reduce them into a system of algebraic equations. Finally, the approximate solution is obtained using Newton’s method. The rigorous convergence and error analysis of the presented method has been discussed in detail. The proposed method has been applied to some well-known stochastic models, such as the stock model and a few other examples, to demonstrate the applicability and plausibility of the discussed method. Also, the numerical results of the collocation method based on the barycentric rational interpolation function and barycentric Lagrange interpolation function get compared with an exact solution.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11009-024-10087-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-024-10087-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Collocation Method for Nonlinear Stochastic Differential Equations Driven by Fractional Brownian Motion and its Application to Mathematical Finance
The main aim of this article is to demonstrate the collocation method based on the barycentric rational interpolation function to solve nonlinear stochastic differential equations driven by fractional Brownian motion. First of all, the corresponding integral form of the nonlinear stochastic differential equations driven by fractional Brownian motion is introduced. Then, collocation points followed by the Gauss-quadrature formula and Simpson’s quadrature method are used to reduce them into a system of algebraic equations. Finally, the approximate solution is obtained using Newton’s method. The rigorous convergence and error analysis of the presented method has been discussed in detail. The proposed method has been applied to some well-known stochastic models, such as the stock model and a few other examples, to demonstrate the applicability and plausibility of the discussed method. Also, the numerical results of the collocation method based on the barycentric rational interpolation function and barycentric Lagrange interpolation function get compared with an exact solution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.