{"title":"关于 $$p$$ - 自整数环字符系统的维纳和列维类型定理","authors":"S. S. Volosivets, A. N. Mingachev","doi":"10.1134/s2070046624020043","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We describe the continuous homomorphisms on subalgebras of absolutely convergent series with respect to the character system of <span>\\(p\\)</span>-adic integers. Using this characterization we obtain Wiener and Levy type theorems for these subalgebras. </p>","PeriodicalId":44654,"journal":{"name":"P-Adic Numbers Ultrametric Analysis and Applications","volume":"156 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Wiener and Levy Type Theorems for System of Characters of the Ring of $$p$$ -Adic Integers\",\"authors\":\"S. S. Volosivets, A. N. Mingachev\",\"doi\":\"10.1134/s2070046624020043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We describe the continuous homomorphisms on subalgebras of absolutely convergent series with respect to the character system of <span>\\\\(p\\\\)</span>-adic integers. Using this characterization we obtain Wiener and Levy type theorems for these subalgebras. </p>\",\"PeriodicalId\":44654,\"journal\":{\"name\":\"P-Adic Numbers Ultrametric Analysis and Applications\",\"volume\":\"156 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"P-Adic Numbers Ultrametric Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s2070046624020043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"P-Adic Numbers Ultrametric Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s2070046624020043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
摘要 我们描述了关于 \(p\)-adic 整数的特征系统的绝对收敛级数子代数上的连续同态。利用这一特征,我们得到了这些子代数的 Wiener 和 Levy 型定理。
On Wiener and Levy Type Theorems for System of Characters of the Ring of $$p$$ -Adic Integers
Abstract
We describe the continuous homomorphisms on subalgebras of absolutely convergent series with respect to the character system of \(p\)-adic integers. Using this characterization we obtain Wiener and Levy type theorems for these subalgebras.
期刊介绍:
This is a new international interdisciplinary journal which contains original articles, short communications, and reviews on progress in various areas of pure and applied mathematics related with p-adic, adelic and ultrametric methods, including: mathematical physics, quantum theory, string theory, cosmology, nanoscience, life sciences; mathematical analysis, number theory, algebraic geometry, non-Archimedean and non-commutative geometry, theory of finite fields and rings, representation theory, functional analysis and graph theory; classical and quantum information, computer science, cryptography, image analysis, cognitive models, neural networks and bioinformatics; complex systems, dynamical systems, stochastic processes, hierarchy structures, modeling, control theory, economics and sociology; mesoscopic and nano systems, disordered and chaotic systems, spin glasses, macromolecules, molecular dynamics, biopolymers, genomics and biology; and other related fields.