{"title":"克鲁尔维度二的交换代数的过滤变形","authors":"Jason P. Bell","doi":"10.1007/s00209-024-03507-7","DOIUrl":null,"url":null,"abstract":"<p>Let <i>F</i> be an algebraically closed field of positive characteristic and let <i>R</i> be a finitely generated <i>F</i>-algebra with a filtration with the property that the associated graded ring of <i>R</i> is a finitely generated integral domain of Krull dimension two. We show that under these conditions <i>R</i> satisfies a polynomial identity, answering a question of Etingof in the affirmative in a special case.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"4 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Filtered deformations of commutative algebras of Krull dimension two\",\"authors\":\"Jason P. Bell\",\"doi\":\"10.1007/s00209-024-03507-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>F</i> be an algebraically closed field of positive characteristic and let <i>R</i> be a finitely generated <i>F</i>-algebra with a filtration with the property that the associated graded ring of <i>R</i> is a finitely generated integral domain of Krull dimension two. We show that under these conditions <i>R</i> satisfies a polynomial identity, answering a question of Etingof in the affirmative in a special case.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03507-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03507-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 F 是正特征的代数闭域,让 R 是有限生成的 F 代数,其滤过性质是 R 的相关分级环是克鲁尔维度二的有限生成积分域。我们证明了在这些条件下 R 满足多项式同一性,从而在一个特例中肯定地回答了 Etingof 的一个问题。
Filtered deformations of commutative algebras of Krull dimension two
Let F be an algebraically closed field of positive characteristic and let R be a finitely generated F-algebra with a filtration with the property that the associated graded ring of R is a finitely generated integral domain of Krull dimension two. We show that under these conditions R satisfies a polynomial identity, answering a question of Etingof in the affirmative in a special case.