{"title":"论同调类型理论中图形的平面性","authors":"Jonathan Prieto-Cubides, Håkon Robbestad Gylterud","doi":"10.1017/s0960129524000100","DOIUrl":null,"url":null,"abstract":"In this paper, we present a constructive and proof-relevant development of graph theory, including the notion of maps, their faces and maps of graphs embedded in the sphere, in homotopy type theory (HoTT). This allows us to provide an elementary characterisation of planarity for locally directed finite and connected multigraphs that takes inspiration from topological graph theory, particularly from combinatorial embeddings of graphs into surfaces. A graph is planar if it has a map and an outer face with which any walk in the embedded graph is walk-homotopic to another. A result is that this type of planar maps forms a homotopy set for a graph. As a way to construct examples of planar graphs inductively, extensions of planar maps are introduced. We formalise the essential parts of this work in the proof assistant Agda with support for HoTT.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"43 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On planarity of graphs in homotopy type theory\",\"authors\":\"Jonathan Prieto-Cubides, Håkon Robbestad Gylterud\",\"doi\":\"10.1017/s0960129524000100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a constructive and proof-relevant development of graph theory, including the notion of maps, their faces and maps of graphs embedded in the sphere, in homotopy type theory (HoTT). This allows us to provide an elementary characterisation of planarity for locally directed finite and connected multigraphs that takes inspiration from topological graph theory, particularly from combinatorial embeddings of graphs into surfaces. A graph is planar if it has a map and an outer face with which any walk in the embedded graph is walk-homotopic to another. A result is that this type of planar maps forms a homotopy set for a graph. As a way to construct examples of planar graphs inductively, extensions of planar maps are introduced. We formalise the essential parts of this work in the proof assistant Agda with support for HoTT.\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0960129524000100\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129524000100","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
In this paper, we present a constructive and proof-relevant development of graph theory, including the notion of maps, their faces and maps of graphs embedded in the sphere, in homotopy type theory (HoTT). This allows us to provide an elementary characterisation of planarity for locally directed finite and connected multigraphs that takes inspiration from topological graph theory, particularly from combinatorial embeddings of graphs into surfaces. A graph is planar if it has a map and an outer face with which any walk in the embedded graph is walk-homotopic to another. A result is that this type of planar maps forms a homotopy set for a graph. As a way to construct examples of planar graphs inductively, extensions of planar maps are introduced. We formalise the essential parts of this work in the proof assistant Agda with support for HoTT.
期刊介绍:
Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.