{"title":"自然数字行为预测认知能力","authors":"Tung Vuong, Giulio Jacucci, Tuukka Ruotsalo","doi":"10.1145/3660341","DOIUrl":null,"url":null,"abstract":"<p>Individuals are known to differ in cognitive abilities, affecting their behavior and information processing in digital environments. However, we have a limited understanding of which behaviors are affected, how, and whether some features extracted from digital behavior can predict cognitive abilities. Consequently, researchers may miss opportunities to design and support individuals with personalized experiences and detect those who may benefit from additional interventions. To characterize digital behaviors, we collected 24/7 screen recordings, input behavior, and operating system data from the laptops of 20 adults for two weeks. We use cognitive test results from the same individuals to characterize their cognitive abilities: psychomotor speed, processing speed, selective attention, working memory, and fluid intelligence. Our results from regression analysis, path modeling, and machine learning experiments show that cognitive abilities are associated with differences in digital behavior and that naturalistic behavioral data can predict the cognitive abilities of individuals with small error rates. Our findings suggest naturalistic interaction data as a novel source for modeling cognitive differences.</p>","PeriodicalId":50917,"journal":{"name":"ACM Transactions on Computer-Human Interaction","volume":"62 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Naturalistic Digital Behavior Predicts Cognitive Abilities\",\"authors\":\"Tung Vuong, Giulio Jacucci, Tuukka Ruotsalo\",\"doi\":\"10.1145/3660341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Individuals are known to differ in cognitive abilities, affecting their behavior and information processing in digital environments. However, we have a limited understanding of which behaviors are affected, how, and whether some features extracted from digital behavior can predict cognitive abilities. Consequently, researchers may miss opportunities to design and support individuals with personalized experiences and detect those who may benefit from additional interventions. To characterize digital behaviors, we collected 24/7 screen recordings, input behavior, and operating system data from the laptops of 20 adults for two weeks. We use cognitive test results from the same individuals to characterize their cognitive abilities: psychomotor speed, processing speed, selective attention, working memory, and fluid intelligence. Our results from regression analysis, path modeling, and machine learning experiments show that cognitive abilities are associated with differences in digital behavior and that naturalistic behavioral data can predict the cognitive abilities of individuals with small error rates. Our findings suggest naturalistic interaction data as a novel source for modeling cognitive differences.</p>\",\"PeriodicalId\":50917,\"journal\":{\"name\":\"ACM Transactions on Computer-Human Interaction\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computer-Human Interaction\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3660341\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer-Human Interaction","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3660341","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Naturalistic Digital Behavior Predicts Cognitive Abilities
Individuals are known to differ in cognitive abilities, affecting their behavior and information processing in digital environments. However, we have a limited understanding of which behaviors are affected, how, and whether some features extracted from digital behavior can predict cognitive abilities. Consequently, researchers may miss opportunities to design and support individuals with personalized experiences and detect those who may benefit from additional interventions. To characterize digital behaviors, we collected 24/7 screen recordings, input behavior, and operating system data from the laptops of 20 adults for two weeks. We use cognitive test results from the same individuals to characterize their cognitive abilities: psychomotor speed, processing speed, selective attention, working memory, and fluid intelligence. Our results from regression analysis, path modeling, and machine learning experiments show that cognitive abilities are associated with differences in digital behavior and that naturalistic behavioral data can predict the cognitive abilities of individuals with small error rates. Our findings suggest naturalistic interaction data as a novel source for modeling cognitive differences.
期刊介绍:
This ACM Transaction seeks to be the premier archival journal in the multidisciplinary field of human-computer interaction. Since its first issue in March 1994, it has presented work of the highest scientific quality that contributes to the practice in the present and future. The primary emphasis is on results of broad application, but the journal considers original work focused on specific domains, on special requirements, on ethical issues -- the full range of design, development, and use of interactive systems.