黎曼zeta函数非琐零点的加权一级密度

IF 1 3区 数学 Q1 MATHEMATICS
Sandro Bettin, Alessandro Fazzari
{"title":"黎曼zeta函数非琐零点的加权一级密度","authors":"Sandro Bettin, Alessandro Fazzari","doi":"10.1007/s00209-024-03496-7","DOIUrl":null,"url":null,"abstract":"<p>We compute the one-level density of the non-trivial zeros of the Riemann zeta-function weighted by <span>\\(|\\zeta (\\frac{1}{2}+it)|^{2k}\\)</span> for <span>\\(k=1\\)</span> and, for test functions with Fourier support in <span>\\((-\\frac{1}{2},\\frac{1}{2})\\)</span>, for <span>\\(k=2\\)</span>. As a consequence, for <span>\\(k=1,2\\)</span>, we deduce under the Riemann hypothesis that <span>\\(T(\\log T)^{1-k^2+o(1)}\\)</span> non-trivial zeros of <span>\\(\\zeta \\)</span>, of imaginary parts up to <i>T</i>, are such that <span>\\(\\zeta \\)</span> attains a value of size <span>\\((\\log T)^{k+o(1)}\\)</span> at a point which is within <span>\\(O(1/\\log T)\\)</span> from the zero.\n</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"43 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A weighted one-level density of the non-trivial zeros of the Riemann zeta-function\",\"authors\":\"Sandro Bettin, Alessandro Fazzari\",\"doi\":\"10.1007/s00209-024-03496-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We compute the one-level density of the non-trivial zeros of the Riemann zeta-function weighted by <span>\\\\(|\\\\zeta (\\\\frac{1}{2}+it)|^{2k}\\\\)</span> for <span>\\\\(k=1\\\\)</span> and, for test functions with Fourier support in <span>\\\\((-\\\\frac{1}{2},\\\\frac{1}{2})\\\\)</span>, for <span>\\\\(k=2\\\\)</span>. As a consequence, for <span>\\\\(k=1,2\\\\)</span>, we deduce under the Riemann hypothesis that <span>\\\\(T(\\\\log T)^{1-k^2+o(1)}\\\\)</span> non-trivial zeros of <span>\\\\(\\\\zeta \\\\)</span>, of imaginary parts up to <i>T</i>, are such that <span>\\\\(\\\\zeta \\\\)</span> attains a value of size <span>\\\\((\\\\log T)^{k+o(1)}\\\\)</span> at a point which is within <span>\\\\(O(1/\\\\log T)\\\\)</span> from the zero.\\n</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03496-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03496-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于(k=1),我们计算黎曼zeta函数的非琐零点的单级密度,对于(-\frac{1}{2},\frac{1}{2}),我们计算黎曼zeta函数的非琐零点的加权(|\zeta (\frac{1}{2}+it)|^{2k}\ ),对于(k=2),我们计算黎曼zeta函数的非琐零点的单级密度,对于(-\frac{1}{2},\frac{1}{2}),我们计算黎曼zeta函数的非琐零点的单级密度。因此,对于(k=1,2),我们根据黎曼假设推导出(T(\log T)^{1-k^2+o(1)}\ )的非三维零点(\zeta \)、的虚部直到 T, 是这样的 \(\zeta \) 达到大小 \((\log T)^{k+o(1)}\)的值在离零点 \(O(1/\log T)\)之内的点上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A weighted one-level density of the non-trivial zeros of the Riemann zeta-function

We compute the one-level density of the non-trivial zeros of the Riemann zeta-function weighted by \(|\zeta (\frac{1}{2}+it)|^{2k}\) for \(k=1\) and, for test functions with Fourier support in \((-\frac{1}{2},\frac{1}{2})\), for \(k=2\). As a consequence, for \(k=1,2\), we deduce under the Riemann hypothesis that \(T(\log T)^{1-k^2+o(1)}\) non-trivial zeros of \(\zeta \), of imaginary parts up to T, are such that \(\zeta \) attains a value of size \((\log T)^{k+o(1)}\) at a point which is within \(O(1/\log T)\) from the zero.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信