保阶函数和保度量函数的马丁猜想第 1 部分

IF 3.5 1区 数学 Q1 MATHEMATICS
Patrick Lutz, Benjamin Siskind
{"title":"保阶函数和保度量函数的马丁猜想第 1 部分","authors":"Patrick Lutz, Benjamin Siskind","doi":"10.1090/jams/1046","DOIUrl":null,"url":null,"abstract":"<p>Martin’s Conjecture is a proposed classification of the definable functions on the Turing degrees. It is usually divided into two parts, the first of which classifies functions which are <italic>not</italic> above the identity and the second of which classifies functions which are above the identity. Slaman and Steel proved the second part of the conjecture for Borel functions which are order-preserving (i.e. which preserve Turing reducibility). We prove the first part of the conjecture for all order-preserving functions. We do this by introducing a class of functions on the Turing degrees which we call “measure-preserving” and proving that part 1 of Martin’s Conjecture holds for all measure-preserving functions and also that all nontrivial order-preserving functions are measure-preserving. Our result on measure-preserving functions has several other consequences for Martin’s Conjecture, including an equivalence between part 1 of the conjecture and a statement about the structure of the Rudin-Keisler order on ultrafilters on the Turing degrees.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Part 1 of Martin’s Conjecture for order-preserving and measure-preserving functions\",\"authors\":\"Patrick Lutz, Benjamin Siskind\",\"doi\":\"10.1090/jams/1046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Martin’s Conjecture is a proposed classification of the definable functions on the Turing degrees. It is usually divided into two parts, the first of which classifies functions which are <italic>not</italic> above the identity and the second of which classifies functions which are above the identity. Slaman and Steel proved the second part of the conjecture for Borel functions which are order-preserving (i.e. which preserve Turing reducibility). We prove the first part of the conjecture for all order-preserving functions. We do this by introducing a class of functions on the Turing degrees which we call “measure-preserving” and proving that part 1 of Martin’s Conjecture holds for all measure-preserving functions and also that all nontrivial order-preserving functions are measure-preserving. Our result on measure-preserving functions has several other consequences for Martin’s Conjecture, including an equivalence between part 1 of the conjecture and a statement about the structure of the Rudin-Keisler order on ultrafilters on the Turing degrees.</p>\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/1046\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/1046","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

马丁猜想是对图灵度上可定义函数的一种分类建议。它通常分为两部分,第一部分是对不在同一性之上的函数的分类,第二部分是对在同一性之上的函数的分类。斯拉曼和斯蒂尔针对保阶(即保持图灵可还原性)的伯勒函数证明了猜想的第二部分。我们为所有保序函数证明了猜想的第一部分。为此,我们引入了一类图灵度上的函数,我们称之为 "度量保全 "函数,并证明马丁猜想的第一部分对所有度量保全函数都成立,同时证明所有非次要的有序保全函数都是度量保全的。我们关于保度量函数的结果对马丁猜想还有其他一些影响,包括猜想的第 1 部分与关于图灵度上超滤的鲁丁-凯斯勒阶结构的声明之间的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Part 1 of Martin’s Conjecture for order-preserving and measure-preserving functions

Martin’s Conjecture is a proposed classification of the definable functions on the Turing degrees. It is usually divided into two parts, the first of which classifies functions which are not above the identity and the second of which classifies functions which are above the identity. Slaman and Steel proved the second part of the conjecture for Borel functions which are order-preserving (i.e. which preserve Turing reducibility). We prove the first part of the conjecture for all order-preserving functions. We do this by introducing a class of functions on the Turing degrees which we call “measure-preserving” and proving that part 1 of Martin’s Conjecture holds for all measure-preserving functions and also that all nontrivial order-preserving functions are measure-preserving. Our result on measure-preserving functions has several other consequences for Martin’s Conjecture, including an equivalence between part 1 of the conjecture and a statement about the structure of the Rudin-Keisler order on ultrafilters on the Turing degrees.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信