共形公设体积的三圆定理

IF 1.1 4区 数学 Q1 MATHEMATICS
Zihao Wang, Jie Zhou
{"title":"共形公设体积的三圆定理","authors":"Zihao Wang, Jie Zhou","doi":"10.1007/s40304-024-00394-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish three circles theorem for volume of conformal metrics whose scalar curvatures are integrable in a critical (scaling invariant) norm. As applications, we analyze the asymptotic behavior of such metrics near isolated singularities and use it to show the residual terms of the Chern–Gauss–Bonnet formula are integers. Such strong rigidity implies a vanishing theorem on the integral value of the <span>\\(Q_g\\)</span> curvature, with application to the bi-Lipschitz equivalence problem for conformal metrics.</p>","PeriodicalId":10575,"journal":{"name":"Communications in Mathematics and Statistics","volume":"156 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three Circles Theorem for Volume of Conformal Metrics\",\"authors\":\"Zihao Wang, Jie Zhou\",\"doi\":\"10.1007/s40304-024-00394-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we establish three circles theorem for volume of conformal metrics whose scalar curvatures are integrable in a critical (scaling invariant) norm. As applications, we analyze the asymptotic behavior of such metrics near isolated singularities and use it to show the residual terms of the Chern–Gauss–Bonnet formula are integers. Such strong rigidity implies a vanishing theorem on the integral value of the <span>\\\\(Q_g\\\\)</span> curvature, with application to the bi-Lipschitz equivalence problem for conformal metrics.</p>\",\"PeriodicalId\":10575,\"journal\":{\"name\":\"Communications in Mathematics and Statistics\",\"volume\":\"156 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40304-024-00394-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40304-024-00394-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们为标量曲率在临界(缩放不变)规范下可积分的共形度量建立了三圈定理。作为应用,我们分析了孤立奇点附近这类度量的渐近行为,并用它来证明 Chern-Gauss-Bonnet 公式的残差项是整数。这种强刚性意味着关于 \(Q_g\) 曲率积分值的消失定理,可应用于保角度量的双利普希茨等价问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Three Circles Theorem for Volume of Conformal Metrics

Three Circles Theorem for Volume of Conformal Metrics

In this paper, we establish three circles theorem for volume of conformal metrics whose scalar curvatures are integrable in a critical (scaling invariant) norm. As applications, we analyze the asymptotic behavior of such metrics near isolated singularities and use it to show the residual terms of the Chern–Gauss–Bonnet formula are integers. Such strong rigidity implies a vanishing theorem on the integral value of the \(Q_g\) curvature, with application to the bi-Lipschitz equivalence problem for conformal metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematics and Statistics
Communications in Mathematics and Statistics Mathematics-Statistics and Probability
CiteScore
1.80
自引率
0.00%
发文量
36
期刊介绍: Communications in Mathematics and Statistics is an international journal published by Springer-Verlag in collaboration with the School of Mathematical Sciences, University of Science and Technology of China (USTC). The journal will be committed to publish high level original peer reviewed research papers in various areas of mathematical sciences, including pure mathematics, applied mathematics, computational mathematics, and probability and statistics. Typically one volume is published each year, and each volume consists of four issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信