共形公设体积的三圆定理

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zihao Wang, Jie Zhou
{"title":"共形公设体积的三圆定理","authors":"Zihao Wang, Jie Zhou","doi":"10.1007/s40304-024-00394-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish three circles theorem for volume of conformal metrics whose scalar curvatures are integrable in a critical (scaling invariant) norm. As applications, we analyze the asymptotic behavior of such metrics near isolated singularities and use it to show the residual terms of the Chern–Gauss–Bonnet formula are integers. Such strong rigidity implies a vanishing theorem on the integral value of the <span>\\(Q_g\\)</span> curvature, with application to the bi-Lipschitz equivalence problem for conformal metrics.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three Circles Theorem for Volume of Conformal Metrics\",\"authors\":\"Zihao Wang, Jie Zhou\",\"doi\":\"10.1007/s40304-024-00394-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we establish three circles theorem for volume of conformal metrics whose scalar curvatures are integrable in a critical (scaling invariant) norm. As applications, we analyze the asymptotic behavior of such metrics near isolated singularities and use it to show the residual terms of the Chern–Gauss–Bonnet formula are integers. Such strong rigidity implies a vanishing theorem on the integral value of the <span>\\\\(Q_g\\\\)</span> curvature, with application to the bi-Lipschitz equivalence problem for conformal metrics.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40304-024-00394-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40304-024-00394-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们为标量曲率在临界(缩放不变)规范下可积分的共形度量建立了三圈定理。作为应用,我们分析了孤立奇点附近这类度量的渐近行为,并用它来证明 Chern-Gauss-Bonnet 公式的残差项是整数。这种强刚性意味着关于 \(Q_g\) 曲率积分值的消失定理,可应用于保角度量的双利普希茨等价问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Three Circles Theorem for Volume of Conformal Metrics

Three Circles Theorem for Volume of Conformal Metrics

In this paper, we establish three circles theorem for volume of conformal metrics whose scalar curvatures are integrable in a critical (scaling invariant) norm. As applications, we analyze the asymptotic behavior of such metrics near isolated singularities and use it to show the residual terms of the Chern–Gauss–Bonnet formula are integers. Such strong rigidity implies a vanishing theorem on the integral value of the \(Q_g\) curvature, with application to the bi-Lipschitz equivalence problem for conformal metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信