Timon Barlag, Florian Chudigiewitsch, Sabrina A. Gaube
{"title":"积分域上代数电路类的逻辑特征","authors":"Timon Barlag, Florian Chudigiewitsch, Sabrina A. Gaube","doi":"10.1017/s0960129524000136","DOIUrl":null,"url":null,"abstract":"We present an adapted construction of algebraic circuits over the reals introduced by Cucker and Meer to arbitrary infinite integral domains and generalize the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000136_inline1.png\"/> <jats:tex-math> $\\mathrm{AC}_{\\mathbb{R}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000136_inline2.png\"/> <jats:tex-math> $\\mathrm{NC}_{\\mathbb{R}}^{}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> classes for this setting. We give a theorem in the style of Immerman’s theorem which shows that for these adapted formalisms, sets decided by circuits of constant depth and polynomial size are the same as sets definable by a suitable adaptation of first-order logic. Additionally, we discuss a generalization of the guarded predicative logic by Durand, Haak and Vollmer, and we show characterizations for the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000136_inline3.png\"/> <jats:tex-math> $\\mathrm{AC}_{R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000136_inline4.png\"/> <jats:tex-math> $\\mathrm{NC}_R^{}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> hierarchy. Those generalizations apply to the Boolean <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000136_inline5.png\"/> <jats:tex-math> $\\mathrm{AC}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000136_inline6.png\"/> <jats:tex-math> $\\mathrm{NC}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> hierarchies as well. Furthermore, we introduce a formalism to be able to compare some of the aforementioned complexity classes with different underlying integral domains.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"16 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logical characterizations of algebraic circuit classes over integral domains\",\"authors\":\"Timon Barlag, Florian Chudigiewitsch, Sabrina A. Gaube\",\"doi\":\"10.1017/s0960129524000136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an adapted construction of algebraic circuits over the reals introduced by Cucker and Meer to arbitrary infinite integral domains and generalize the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000136_inline1.png\\\"/> <jats:tex-math> $\\\\mathrm{AC}_{\\\\mathbb{R}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000136_inline2.png\\\"/> <jats:tex-math> $\\\\mathrm{NC}_{\\\\mathbb{R}}^{}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> classes for this setting. We give a theorem in the style of Immerman’s theorem which shows that for these adapted formalisms, sets decided by circuits of constant depth and polynomial size are the same as sets definable by a suitable adaptation of first-order logic. Additionally, we discuss a generalization of the guarded predicative logic by Durand, Haak and Vollmer, and we show characterizations for the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000136_inline3.png\\\"/> <jats:tex-math> $\\\\mathrm{AC}_{R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000136_inline4.png\\\"/> <jats:tex-math> $\\\\mathrm{NC}_R^{}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> hierarchy. Those generalizations apply to the Boolean <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000136_inline5.png\\\"/> <jats:tex-math> $\\\\mathrm{AC}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000136_inline6.png\\\"/> <jats:tex-math> $\\\\mathrm{NC}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> hierarchies as well. Furthermore, we introduce a formalism to be able to compare some of the aforementioned complexity classes with different underlying integral domains.\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0960129524000136\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129524000136","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Logical characterizations of algebraic circuit classes over integral domains
We present an adapted construction of algebraic circuits over the reals introduced by Cucker and Meer to arbitrary infinite integral domains and generalize the $\mathrm{AC}_{\mathbb{R}}$ and $\mathrm{NC}_{\mathbb{R}}^{}$ classes for this setting. We give a theorem in the style of Immerman’s theorem which shows that for these adapted formalisms, sets decided by circuits of constant depth and polynomial size are the same as sets definable by a suitable adaptation of first-order logic. Additionally, we discuss a generalization of the guarded predicative logic by Durand, Haak and Vollmer, and we show characterizations for the $\mathrm{AC}_{R}$ and $\mathrm{NC}_R^{}$ hierarchy. Those generalizations apply to the Boolean $\mathrm{AC}$ and $\mathrm{NC}$ hierarchies as well. Furthermore, we introduce a formalism to be able to compare some of the aforementioned complexity classes with different underlying integral domains.
期刊介绍:
Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.