{"title":"基于 CZM 模型的 FRP 加固盾构分段接头加固效果评估","authors":"Jianjun Kuang, Yuanqing Chen, Xiaofei Li, Wei Guo, Jia Li, Yiqun Huang","doi":"10.1155/2024/8888139","DOIUrl":null,"url":null,"abstract":"As the weakest link in the shield segment, the reinforcement and repair technology of shield segment joint has received widespread attention. In this study, an finite element model utilizing a cohesive zone model (CZM) was constructed to simulate the mechanical behavior of the shield segment joint during the whole fracture process. The proposed modeling method of joint allows multiple layers of steel bars to be stacked without interference by applying cohesive elements. Cohesive elements were employed to represent the mechanical response of potential fracture surfaces in concrete, as well as the interfaces between steel–concrete and fiber-reinforced polymer (FRP)–concrete, by utilizing various constitutive models tailored for mixed-mode loading conditions. A group of experiments was chosen to assess the precision of the proposed model by comparing the mechanical response and the fracture patterns. Finally, parameter analyses were conducted to study the reinforcement effect of the FRP bonding length and width on the shield segment joint. The results indicate that external bonding of FRP can effectively enhance the bearing capacity and stiffness of shield segment joints. However, insufficient bonding length or width may significantly reduce the strengthening effect and potentially decrease the ductility of the joint.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Reinforcement Effect of FRP-Strengthened Shield Segment Joint Based on the CZM Model\",\"authors\":\"Jianjun Kuang, Yuanqing Chen, Xiaofei Li, Wei Guo, Jia Li, Yiqun Huang\",\"doi\":\"10.1155/2024/8888139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the weakest link in the shield segment, the reinforcement and repair technology of shield segment joint has received widespread attention. In this study, an finite element model utilizing a cohesive zone model (CZM) was constructed to simulate the mechanical behavior of the shield segment joint during the whole fracture process. The proposed modeling method of joint allows multiple layers of steel bars to be stacked without interference by applying cohesive elements. Cohesive elements were employed to represent the mechanical response of potential fracture surfaces in concrete, as well as the interfaces between steel–concrete and fiber-reinforced polymer (FRP)–concrete, by utilizing various constitutive models tailored for mixed-mode loading conditions. A group of experiments was chosen to assess the precision of the proposed model by comparing the mechanical response and the fracture patterns. Finally, parameter analyses were conducted to study the reinforcement effect of the FRP bonding length and width on the shield segment joint. The results indicate that external bonding of FRP can effectively enhance the bearing capacity and stiffness of shield segment joints. However, insufficient bonding length or width may significantly reduce the strengthening effect and potentially decrease the ductility of the joint.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/8888139\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/8888139","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Assessment of Reinforcement Effect of FRP-Strengthened Shield Segment Joint Based on the CZM Model
As the weakest link in the shield segment, the reinforcement and repair technology of shield segment joint has received widespread attention. In this study, an finite element model utilizing a cohesive zone model (CZM) was constructed to simulate the mechanical behavior of the shield segment joint during the whole fracture process. The proposed modeling method of joint allows multiple layers of steel bars to be stacked without interference by applying cohesive elements. Cohesive elements were employed to represent the mechanical response of potential fracture surfaces in concrete, as well as the interfaces between steel–concrete and fiber-reinforced polymer (FRP)–concrete, by utilizing various constitutive models tailored for mixed-mode loading conditions. A group of experiments was chosen to assess the precision of the proposed model by comparing the mechanical response and the fracture patterns. Finally, parameter analyses were conducted to study the reinforcement effect of the FRP bonding length and width on the shield segment joint. The results indicate that external bonding of FRP can effectively enhance the bearing capacity and stiffness of shield segment joints. However, insufficient bonding length or width may significantly reduce the strengthening effect and potentially decrease the ductility of the joint.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.