基于 CZM 模型的 FRP 加固盾构分段接头加固效果评估

IF 1.5 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Jianjun Kuang, Yuanqing Chen, Xiaofei Li, Wei Guo, Jia Li, Yiqun Huang
{"title":"基于 CZM 模型的 FRP 加固盾构分段接头加固效果评估","authors":"Jianjun Kuang, Yuanqing Chen, Xiaofei Li, Wei Guo, Jia Li, Yiqun Huang","doi":"10.1155/2024/8888139","DOIUrl":null,"url":null,"abstract":"As the weakest link in the shield segment, the reinforcement and repair technology of shield segment joint has received widespread attention. In this study, an finite element model utilizing a cohesive zone model (CZM) was constructed to simulate the mechanical behavior of the shield segment joint during the whole fracture process. The proposed modeling method of joint allows multiple layers of steel bars to be stacked without interference by applying cohesive elements. Cohesive elements were employed to represent the mechanical response of potential fracture surfaces in concrete, as well as the interfaces between steel–concrete and fiber-reinforced polymer (FRP)–concrete, by utilizing various constitutive models tailored for mixed-mode loading conditions. A group of experiments was chosen to assess the precision of the proposed model by comparing the mechanical response and the fracture patterns. Finally, parameter analyses were conducted to study the reinforcement effect of the FRP bonding length and width on the shield segment joint. The results indicate that external bonding of FRP can effectively enhance the bearing capacity and stiffness of shield segment joints. However, insufficient bonding length or width may significantly reduce the strengthening effect and potentially decrease the ductility of the joint.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"28 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Reinforcement Effect of FRP-Strengthened Shield Segment Joint Based on the CZM Model\",\"authors\":\"Jianjun Kuang, Yuanqing Chen, Xiaofei Li, Wei Guo, Jia Li, Yiqun Huang\",\"doi\":\"10.1155/2024/8888139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the weakest link in the shield segment, the reinforcement and repair technology of shield segment joint has received widespread attention. In this study, an finite element model utilizing a cohesive zone model (CZM) was constructed to simulate the mechanical behavior of the shield segment joint during the whole fracture process. The proposed modeling method of joint allows multiple layers of steel bars to be stacked without interference by applying cohesive elements. Cohesive elements were employed to represent the mechanical response of potential fracture surfaces in concrete, as well as the interfaces between steel–concrete and fiber-reinforced polymer (FRP)–concrete, by utilizing various constitutive models tailored for mixed-mode loading conditions. A group of experiments was chosen to assess the precision of the proposed model by comparing the mechanical response and the fracture patterns. Finally, parameter analyses were conducted to study the reinforcement effect of the FRP bonding length and width on the shield segment joint. The results indicate that external bonding of FRP can effectively enhance the bearing capacity and stiffness of shield segment joints. However, insufficient bonding length or width may significantly reduce the strengthening effect and potentially decrease the ductility of the joint.\",\"PeriodicalId\":7242,\"journal\":{\"name\":\"Advances in Civil Engineering\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/8888139\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/8888139","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

作为盾构分段中最薄弱的环节,盾构分段接头的加固和修复技术受到了广泛关注。本研究利用内聚区模型(CZM)构建了有限元模型,以模拟整个断裂过程中盾构节段连接处的力学行为。所提出的接头建模方法通过应用内聚元素,允许多层钢筋无干扰地堆叠在一起。通过利用各种为混合模式加载条件量身定制的构成模型,采用内聚元素来表示混凝土中潜在断裂面的机械响应,以及钢-混凝土和纤维增强聚合物(FRP)-混凝土之间的界面。我们选择了一组实验,通过比较机械响应和断裂模式来评估所提出模型的精确性。最后,还进行了参数分析,研究玻璃钢粘接长度和宽度对盾构分段连接的加固效果。结果表明,外部粘接玻璃钢可有效提高盾构分段接头的承载能力和刚度。但是,如果粘接长度或宽度不足,则会大大降低加固效果,并有可能降低接头的延展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Reinforcement Effect of FRP-Strengthened Shield Segment Joint Based on the CZM Model
As the weakest link in the shield segment, the reinforcement and repair technology of shield segment joint has received widespread attention. In this study, an finite element model utilizing a cohesive zone model (CZM) was constructed to simulate the mechanical behavior of the shield segment joint during the whole fracture process. The proposed modeling method of joint allows multiple layers of steel bars to be stacked without interference by applying cohesive elements. Cohesive elements were employed to represent the mechanical response of potential fracture surfaces in concrete, as well as the interfaces between steel–concrete and fiber-reinforced polymer (FRP)–concrete, by utilizing various constitutive models tailored for mixed-mode loading conditions. A group of experiments was chosen to assess the precision of the proposed model by comparing the mechanical response and the fracture patterns. Finally, parameter analyses were conducted to study the reinforcement effect of the FRP bonding length and width on the shield segment joint. The results indicate that external bonding of FRP can effectively enhance the bearing capacity and stiffness of shield segment joints. However, insufficient bonding length or width may significantly reduce the strengthening effect and potentially decrease the ductility of the joint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Civil Engineering
Advances in Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
4.00
自引率
5.60%
发文量
612
审稿时长
15 weeks
期刊介绍: Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged. Subject areas include (but are by no means limited to): -Structural mechanics and engineering- Structural design and construction management- Structural analysis and computational mechanics- Construction technology and implementation- Construction materials design and engineering- Highway and transport engineering- Bridge and tunnel engineering- Municipal and urban engineering- Coastal, harbour and offshore engineering-- Geotechnical and earthquake engineering Engineering for water, waste, energy, and environmental applications- Hydraulic engineering and fluid mechanics- Surveying, monitoring, and control systems in construction- Health and safety in a civil engineering setting. Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信