Nur Hussain, Alemu Gonsamo, Shusen Wang, M. Altaf Arain
{"title":"利用哨兵-2 号卫星遥感和涡度协方差通量数据评估海绵状蛾害对森林生产力和碳损失的影响","authors":"Nur Hussain, Alemu Gonsamo, Shusen Wang, M. Altaf Arain","doi":"10.1186/s13717-024-00520-w","DOIUrl":null,"url":null,"abstract":"Deciduous forests in eastern North America experienced a widespread and intense spongy moth (Lymantria dispar) infestation in 2021. This study quantified the impact of this spongy moth infestation on carbon (C) cycle in forests across the Great Lakes region in Canada, utilizing high-resolution (10 × 10 m2) Sentinel-2 satellite remote sensing images and eddy covariance (EC) flux data. Study results showed a significant reduction in leaf area index (LAI) and gross primary productivity (GPP) values in deciduous and mixed forests in the region in 2021. Remote sensing derived, growing season mean LAI values of deciduous (mixed) forests were 3.66 (3.18), 2.74 (2.64), and 3.53 (2.94) m2 m−2 in 2020, 2021 and 2022, respectively, indicating about 24 (14)% reduction in LAI, as compared to pre- and post-infestation years. Similarly, growing season GPP values in deciduous (mixed) forests were 1338 (1208), 868 (932), and 1367 (1175) g C m−2, respectively in 2020, 2021 and 2022, showing about 35 (22)% reduction in GPP in 2021 as compared to pre- and post-infestation years. This infestation induced reduction in GPP of deciduous and mixed forests, when upscaled to whole study area (178,000 km2), resulted in 21.1 (21.4) Mt of C loss as compared to 2020 (2022), respectively. It shows the large scale of C losses caused by this infestation in Canadian Great Lakes region. The methods developed in this study offer valuable tools to assess and quantify natural disturbance impacts on the regional C balance of forest ecosystems by integrating field observations, high-resolution remote sensing data and models. Study results will also help in developing sustainable forest management practices to achieve net-zero C emission goals through nature-based climate change solutions.","PeriodicalId":11419,"journal":{"name":"Ecological Processes","volume":"61 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of spongy moth infestation impacts on forest productivity and carbon loss using the Sentinel-2 satellite remote sensing and eddy covariance flux data\",\"authors\":\"Nur Hussain, Alemu Gonsamo, Shusen Wang, M. Altaf Arain\",\"doi\":\"10.1186/s13717-024-00520-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deciduous forests in eastern North America experienced a widespread and intense spongy moth (Lymantria dispar) infestation in 2021. This study quantified the impact of this spongy moth infestation on carbon (C) cycle in forests across the Great Lakes region in Canada, utilizing high-resolution (10 × 10 m2) Sentinel-2 satellite remote sensing images and eddy covariance (EC) flux data. Study results showed a significant reduction in leaf area index (LAI) and gross primary productivity (GPP) values in deciduous and mixed forests in the region in 2021. Remote sensing derived, growing season mean LAI values of deciduous (mixed) forests were 3.66 (3.18), 2.74 (2.64), and 3.53 (2.94) m2 m−2 in 2020, 2021 and 2022, respectively, indicating about 24 (14)% reduction in LAI, as compared to pre- and post-infestation years. Similarly, growing season GPP values in deciduous (mixed) forests were 1338 (1208), 868 (932), and 1367 (1175) g C m−2, respectively in 2020, 2021 and 2022, showing about 35 (22)% reduction in GPP in 2021 as compared to pre- and post-infestation years. This infestation induced reduction in GPP of deciduous and mixed forests, when upscaled to whole study area (178,000 km2), resulted in 21.1 (21.4) Mt of C loss as compared to 2020 (2022), respectively. It shows the large scale of C losses caused by this infestation in Canadian Great Lakes region. The methods developed in this study offer valuable tools to assess and quantify natural disturbance impacts on the regional C balance of forest ecosystems by integrating field observations, high-resolution remote sensing data and models. Study results will also help in developing sustainable forest management practices to achieve net-zero C emission goals through nature-based climate change solutions.\",\"PeriodicalId\":11419,\"journal\":{\"name\":\"Ecological Processes\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Processes\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s13717-024-00520-w\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Processes","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s13717-024-00520-w","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Assessment of spongy moth infestation impacts on forest productivity and carbon loss using the Sentinel-2 satellite remote sensing and eddy covariance flux data
Deciduous forests in eastern North America experienced a widespread and intense spongy moth (Lymantria dispar) infestation in 2021. This study quantified the impact of this spongy moth infestation on carbon (C) cycle in forests across the Great Lakes region in Canada, utilizing high-resolution (10 × 10 m2) Sentinel-2 satellite remote sensing images and eddy covariance (EC) flux data. Study results showed a significant reduction in leaf area index (LAI) and gross primary productivity (GPP) values in deciduous and mixed forests in the region in 2021. Remote sensing derived, growing season mean LAI values of deciduous (mixed) forests were 3.66 (3.18), 2.74 (2.64), and 3.53 (2.94) m2 m−2 in 2020, 2021 and 2022, respectively, indicating about 24 (14)% reduction in LAI, as compared to pre- and post-infestation years. Similarly, growing season GPP values in deciduous (mixed) forests were 1338 (1208), 868 (932), and 1367 (1175) g C m−2, respectively in 2020, 2021 and 2022, showing about 35 (22)% reduction in GPP in 2021 as compared to pre- and post-infestation years. This infestation induced reduction in GPP of deciduous and mixed forests, when upscaled to whole study area (178,000 km2), resulted in 21.1 (21.4) Mt of C loss as compared to 2020 (2022), respectively. It shows the large scale of C losses caused by this infestation in Canadian Great Lakes region. The methods developed in this study offer valuable tools to assess and quantify natural disturbance impacts on the regional C balance of forest ecosystems by integrating field observations, high-resolution remote sensing data and models. Study results will also help in developing sustainable forest management practices to achieve net-zero C emission goals through nature-based climate change solutions.
期刊介绍:
Ecological Processes is an international, peer-reviewed, open access journal devoted to quality publications in ecological studies with a focus on the underlying processes responsible for the dynamics and functions of ecological systems at multiple spatial and temporal scales. The journal welcomes manuscripts on techniques, approaches, concepts, models, reviews, syntheses, short communications and applied research for advancing our knowledge and capability toward sustainability of ecosystems and the environment. Integrations of ecological and socio-economic processes are strongly encouraged.