{"title":"复杂地形林冠上光合有效辐射与全球太阳辐射之比:基于清远科尔塔的测量与分析","authors":"Shuangtian Li, Qiaoling Yan, Tian Gao, Xingchang Wang, Qingwei Wang, Fengyuan Yu, Deliang Lu, Huaqi Liu, Jinxin Zhang, Jiaojun Zhu","doi":"10.1186/s13717-024-00514-8","DOIUrl":null,"url":null,"abstract":"Understanding of the ratio of photosynthetic photon flux density (Qp) to global solar radiation (Rs) (Qp/Rs) is crucial for applying Rs to ecology-related studies. Previous studies reported Qp/Rs and its variations based on measurements from a single observatory tower, instead of multi-site-based measurements over complex terrains. This may neglect spatial heterogeneity in the terrain, creating a gap in an understanding of how terrain affects Qp/Rs and how this effect interacts with meteorological factors. Here the Qingyuan Ker Towers (three towers in a valley with different terrains: T1, T2, and T3) were utilized to measure Qp and Rs over mountainous forests of Northeast China. An airborne LiDAR system was used to generate a digital elevation model, and sky view factor of sectors (SVFs) divided from the field of view of tower’s pyranometer was calculated as a topographic factor to explain the variations of Qp/Rs. The results identified significant differences in Qp/Rs of the three towers at both daily and half-hour scales, with larger differences on clear days than on overcast days. Qp/Rs was positively correlated with SVFs of T1 and T3, while this correlation was negative with that of T2. The effect of SVFs on Qp/Rs interacted with clearness index, water vapor pressure and solar zenith angle. Random forest-based importance assessment demonstrated that explanation (R2) on Qp/Rs was improved when SVFs was included in the predictor variable set, indicating that incorporating terrain effects enhances the prediction accuracy of Qp/Rs. The improvement in the R2 values was more pronounced on clear days than on overcast days, suggesting that the effect of terrain on Qp/Rs depended on sky conditions. All findings suggested that Qp/Rs is affected by terrain, and integrating terrain information into existing Qp/Rs models is a feasible solution to improve Qp/Rs estimates in mountainous areas.","PeriodicalId":11419,"journal":{"name":"Ecological Processes","volume":"117 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ratio of photosynthetically active radiation to global solar radiation above forest canopy in complex terrain: measurements and analyses based on Qingyuan Ker Towers\",\"authors\":\"Shuangtian Li, Qiaoling Yan, Tian Gao, Xingchang Wang, Qingwei Wang, Fengyuan Yu, Deliang Lu, Huaqi Liu, Jinxin Zhang, Jiaojun Zhu\",\"doi\":\"10.1186/s13717-024-00514-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding of the ratio of photosynthetic photon flux density (Qp) to global solar radiation (Rs) (Qp/Rs) is crucial for applying Rs to ecology-related studies. Previous studies reported Qp/Rs and its variations based on measurements from a single observatory tower, instead of multi-site-based measurements over complex terrains. This may neglect spatial heterogeneity in the terrain, creating a gap in an understanding of how terrain affects Qp/Rs and how this effect interacts with meteorological factors. Here the Qingyuan Ker Towers (three towers in a valley with different terrains: T1, T2, and T3) were utilized to measure Qp and Rs over mountainous forests of Northeast China. An airborne LiDAR system was used to generate a digital elevation model, and sky view factor of sectors (SVFs) divided from the field of view of tower’s pyranometer was calculated as a topographic factor to explain the variations of Qp/Rs. The results identified significant differences in Qp/Rs of the three towers at both daily and half-hour scales, with larger differences on clear days than on overcast days. Qp/Rs was positively correlated with SVFs of T1 and T3, while this correlation was negative with that of T2. The effect of SVFs on Qp/Rs interacted with clearness index, water vapor pressure and solar zenith angle. Random forest-based importance assessment demonstrated that explanation (R2) on Qp/Rs was improved when SVFs was included in the predictor variable set, indicating that incorporating terrain effects enhances the prediction accuracy of Qp/Rs. The improvement in the R2 values was more pronounced on clear days than on overcast days, suggesting that the effect of terrain on Qp/Rs depended on sky conditions. All findings suggested that Qp/Rs is affected by terrain, and integrating terrain information into existing Qp/Rs models is a feasible solution to improve Qp/Rs estimates in mountainous areas.\",\"PeriodicalId\":11419,\"journal\":{\"name\":\"Ecological Processes\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Processes\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s13717-024-00514-8\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Processes","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s13717-024-00514-8","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Ratio of photosynthetically active radiation to global solar radiation above forest canopy in complex terrain: measurements and analyses based on Qingyuan Ker Towers
Understanding of the ratio of photosynthetic photon flux density (Qp) to global solar radiation (Rs) (Qp/Rs) is crucial for applying Rs to ecology-related studies. Previous studies reported Qp/Rs and its variations based on measurements from a single observatory tower, instead of multi-site-based measurements over complex terrains. This may neglect spatial heterogeneity in the terrain, creating a gap in an understanding of how terrain affects Qp/Rs and how this effect interacts with meteorological factors. Here the Qingyuan Ker Towers (three towers in a valley with different terrains: T1, T2, and T3) were utilized to measure Qp and Rs over mountainous forests of Northeast China. An airborne LiDAR system was used to generate a digital elevation model, and sky view factor of sectors (SVFs) divided from the field of view of tower’s pyranometer was calculated as a topographic factor to explain the variations of Qp/Rs. The results identified significant differences in Qp/Rs of the three towers at both daily and half-hour scales, with larger differences on clear days than on overcast days. Qp/Rs was positively correlated with SVFs of T1 and T3, while this correlation was negative with that of T2. The effect of SVFs on Qp/Rs interacted with clearness index, water vapor pressure and solar zenith angle. Random forest-based importance assessment demonstrated that explanation (R2) on Qp/Rs was improved when SVFs was included in the predictor variable set, indicating that incorporating terrain effects enhances the prediction accuracy of Qp/Rs. The improvement in the R2 values was more pronounced on clear days than on overcast days, suggesting that the effect of terrain on Qp/Rs depended on sky conditions. All findings suggested that Qp/Rs is affected by terrain, and integrating terrain information into existing Qp/Rs models is a feasible solution to improve Qp/Rs estimates in mountainous areas.
期刊介绍:
Ecological Processes is an international, peer-reviewed, open access journal devoted to quality publications in ecological studies with a focus on the underlying processes responsible for the dynamics and functions of ecological systems at multiple spatial and temporal scales. The journal welcomes manuscripts on techniques, approaches, concepts, models, reviews, syntheses, short communications and applied research for advancing our knowledge and capability toward sustainability of ecosystems and the environment. Integrations of ecological and socio-economic processes are strongly encouraged.