Prity Kumari, Satish Kumar M, Prashant Vekariya, Shubhra N. Kujur, Jignesh Macwan, Pradeep Mishra
{"title":"预测印度 UP 省阿格拉的马铃薯价格:H2O AutoML 方法","authors":"Prity Kumari, Satish Kumar M, Prashant Vekariya, Shubhra N. Kujur, Jignesh Macwan, Pradeep Mishra","doi":"10.1007/s11540-024-09726-z","DOIUrl":null,"url":null,"abstract":"<p>The dynamics of the potato market in Agra, Uttar Pradesh, India, represent significant price volatility that affects stakeholders across the supply chain. This study addresses the critical need for accurate forecasting of potato price, which is utmost for optimising production, marketing strategies and inventory management. However, existing forecasting models often fail to provide the accuracy required for effective planning and resource allocation. This research aims to bridge this gap by investigating the potential of advanced predictive models to offer closer approximations of potato prices. Covering the period from January 1, 2006, to July 31, 2023, the methodology employed the H2O AutoML framework to identify and evaluate predictive models based on two distinct train-test split ratios, 80:20 and 70:30. The selection of the top 20 models for each configuration, assessed using the root mean square error, revealed the 70:30 split’s superior performance. Further analysis identified the top three models: stacked ensemble, gradient boosting machine and extreme gradient boosting, with the stacked ensemble model emerging as the optimal choice with forecasting errors ranging from 0.08 to 2.09% for daily prices of potato. This result illustrates the effectiveness of the stacked ensemble model in advancing strategic decision-making and resource distribution within the potato industry, with a notable improvement in the accuracy of price predictions contributing to more efficient and informed operational strategies.</p>","PeriodicalId":20378,"journal":{"name":"Potato Research","volume":"3 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Potato Prices in Agra, UP, India: An H2O AutoML Approach\",\"authors\":\"Prity Kumari, Satish Kumar M, Prashant Vekariya, Shubhra N. Kujur, Jignesh Macwan, Pradeep Mishra\",\"doi\":\"10.1007/s11540-024-09726-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The dynamics of the potato market in Agra, Uttar Pradesh, India, represent significant price volatility that affects stakeholders across the supply chain. This study addresses the critical need for accurate forecasting of potato price, which is utmost for optimising production, marketing strategies and inventory management. However, existing forecasting models often fail to provide the accuracy required for effective planning and resource allocation. This research aims to bridge this gap by investigating the potential of advanced predictive models to offer closer approximations of potato prices. Covering the period from January 1, 2006, to July 31, 2023, the methodology employed the H2O AutoML framework to identify and evaluate predictive models based on two distinct train-test split ratios, 80:20 and 70:30. The selection of the top 20 models for each configuration, assessed using the root mean square error, revealed the 70:30 split’s superior performance. Further analysis identified the top three models: stacked ensemble, gradient boosting machine and extreme gradient boosting, with the stacked ensemble model emerging as the optimal choice with forecasting errors ranging from 0.08 to 2.09% for daily prices of potato. This result illustrates the effectiveness of the stacked ensemble model in advancing strategic decision-making and resource distribution within the potato industry, with a notable improvement in the accuracy of price predictions contributing to more efficient and informed operational strategies.</p>\",\"PeriodicalId\":20378,\"journal\":{\"name\":\"Potato Research\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potato Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11540-024-09726-z\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potato Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11540-024-09726-z","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Predicting Potato Prices in Agra, UP, India: An H2O AutoML Approach
The dynamics of the potato market in Agra, Uttar Pradesh, India, represent significant price volatility that affects stakeholders across the supply chain. This study addresses the critical need for accurate forecasting of potato price, which is utmost for optimising production, marketing strategies and inventory management. However, existing forecasting models often fail to provide the accuracy required for effective planning and resource allocation. This research aims to bridge this gap by investigating the potential of advanced predictive models to offer closer approximations of potato prices. Covering the period from January 1, 2006, to July 31, 2023, the methodology employed the H2O AutoML framework to identify and evaluate predictive models based on two distinct train-test split ratios, 80:20 and 70:30. The selection of the top 20 models for each configuration, assessed using the root mean square error, revealed the 70:30 split’s superior performance. Further analysis identified the top three models: stacked ensemble, gradient boosting machine and extreme gradient boosting, with the stacked ensemble model emerging as the optimal choice with forecasting errors ranging from 0.08 to 2.09% for daily prices of potato. This result illustrates the effectiveness of the stacked ensemble model in advancing strategic decision-making and resource distribution within the potato industry, with a notable improvement in the accuracy of price predictions contributing to more efficient and informed operational strategies.
期刊介绍:
Potato Research, the journal of the European Association for Potato Research (EAPR), promotes the exchange of information on all aspects of this fast-evolving global industry. It offers the latest developments in innovative research to scientists active in potato research. The journal includes authoritative coverage of new scientific developments, publishing original research and review papers on such topics as:
Molecular sciences;
Breeding;
Physiology;
Pathology;
Nematology;
Virology;
Agronomy;
Engineering and Utilization.