非负随机矩阵的条件局部极限定理

Pub Date : 2024-05-13 DOI:10.1007/s10959-024-01336-2
Marc Peigné, Da Cam Pham
{"title":"非负随机矩阵的条件局部极限定理","authors":"Marc Peigné, Da Cam Pham","doi":"10.1007/s10959-024-01336-2","DOIUrl":null,"url":null,"abstract":"<p>For any fixed real <span>\\(a &gt; 0\\)</span> and <span>\\(x \\in {\\mathbb {R}}^d, d \\ge 1\\)</span>, we consider the real-valued random process <span>\\((S_n)_{n \\ge 0}\\)</span> defined by <span>\\( S_0= a, S_n= a+\\ln \\vert g_n\\cdots g_1x\\vert , n \\ge 1\\)</span>, where the <span>\\(g_k, k \\ge 1, \\)</span> are i.i.d. nonnegative random matrices. By using the strategy initiated by Denisov and Wachtel to control fluctuations in cones of <i>d</i>-dimensional random walks, we obtain an asymptotic estimate and bounds on the probability that the process <span>\\((S_n)_{n \\ge 0}\\)</span> remains nonnegative up to time <i>n</i> and simultaneously belongs to some compact set <span>\\([b, b+\\ell ]\\subset {\\mathbb {R}}^+_*\\)</span> at time <i>n</i>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Conditioned Local Limit Theorem for Nonnegative Random Matrices\",\"authors\":\"Marc Peigné, Da Cam Pham\",\"doi\":\"10.1007/s10959-024-01336-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For any fixed real <span>\\\\(a &gt; 0\\\\)</span> and <span>\\\\(x \\\\in {\\\\mathbb {R}}^d, d \\\\ge 1\\\\)</span>, we consider the real-valued random process <span>\\\\((S_n)_{n \\\\ge 0}\\\\)</span> defined by <span>\\\\( S_0= a, S_n= a+\\\\ln \\\\vert g_n\\\\cdots g_1x\\\\vert , n \\\\ge 1\\\\)</span>, where the <span>\\\\(g_k, k \\\\ge 1, \\\\)</span> are i.i.d. nonnegative random matrices. By using the strategy initiated by Denisov and Wachtel to control fluctuations in cones of <i>d</i>-dimensional random walks, we obtain an asymptotic estimate and bounds on the probability that the process <span>\\\\((S_n)_{n \\\\ge 0}\\\\)</span> remains nonnegative up to time <i>n</i> and simultaneously belongs to some compact set <span>\\\\([b, b+\\\\ell ]\\\\subset {\\\\mathbb {R}}^+_*\\\\)</span> at time <i>n</i>.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-024-01336-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01336-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于任何固定的实值(a >;0) and\(x \in {\mathbb {R}}^d, d \ge 1\), we consider the real-valued random process \((S_n)_{n \ge 0}\) defined by \( S_0= a, S_n= a+\ln \vert g_n\cdots g_1x\vert , n \ge 1\), where the \(g_k, k \ge 1, \) are i. d non-negative random matrics.i.d. 非负随机矩阵。通过使用杰尼索夫(Denisov)和瓦赫特尔(Wachtel)提出的控制d维随机游走的锥体波动的策略,我们得到了一个渐近估计和过程\((S_n)_{n \ge 0}\)在时间n之前保持非负并且在时间n时同时属于某个紧凑集\([b, b+\ell ]子集{\mathbb {R}}^+_\) 的概率边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A Conditioned Local Limit Theorem for Nonnegative Random Matrices

For any fixed real \(a > 0\) and \(x \in {\mathbb {R}}^d, d \ge 1\), we consider the real-valued random process \((S_n)_{n \ge 0}\) defined by \( S_0= a, S_n= a+\ln \vert g_n\cdots g_1x\vert , n \ge 1\), where the \(g_k, k \ge 1, \) are i.i.d. nonnegative random matrices. By using the strategy initiated by Denisov and Wachtel to control fluctuations in cones of d-dimensional random walks, we obtain an asymptotic estimate and bounds on the probability that the process \((S_n)_{n \ge 0}\) remains nonnegative up to time n and simultaneously belongs to some compact set \([b, b+\ell ]\subset {\mathbb {R}}^+_*\) at time n.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信