Alec B. M. Van Helsdingen, Tiago A. Marques, Charlotte M. Jones-Todd
{"title":"用非均质 Weibull-Hawkes 过程模拟分散不足的声学线索","authors":"Alec B. M. Van Helsdingen, Tiago A. Marques, Charlotte M. Jones-Todd","doi":"10.1007/s13253-024-00626-w","DOIUrl":null,"url":null,"abstract":"<p>A Hawkes point process describes self-exciting behaviour where event arrivals are triggered by historic events. These models are increasingly becoming a popular choice in analysing event-type data. Like all other inhomogeneous Poisson point processes, the waiting time between events in a Hawkes process is derived from an exponential distribution with mean one. However, as with many ecological and environmental data, this is an unrealistic assumption. We, therefore, extend and generalise the Hawkes process to account for potential under- or overdispersion in the waiting times between events by assuming the Weibull distribution as the foundation of the waiting times. We apply this model to the acoustic cue production times of sperm whales and show that our Weibull–Hawkes model better captures the inherent underdispersion in the interarrival times of echolocation clicks emitted by these whales.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Inhomogeneous Weibull–Hawkes Process to Model Underdispersed Acoustic Cues\",\"authors\":\"Alec B. M. Van Helsdingen, Tiago A. Marques, Charlotte M. Jones-Todd\",\"doi\":\"10.1007/s13253-024-00626-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A Hawkes point process describes self-exciting behaviour where event arrivals are triggered by historic events. These models are increasingly becoming a popular choice in analysing event-type data. Like all other inhomogeneous Poisson point processes, the waiting time between events in a Hawkes process is derived from an exponential distribution with mean one. However, as with many ecological and environmental data, this is an unrealistic assumption. We, therefore, extend and generalise the Hawkes process to account for potential under- or overdispersion in the waiting times between events by assuming the Weibull distribution as the foundation of the waiting times. We apply this model to the acoustic cue production times of sperm whales and show that our Weibull–Hawkes model better captures the inherent underdispersion in the interarrival times of echolocation clicks emitted by these whales.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13253-024-00626-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-024-00626-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An Inhomogeneous Weibull–Hawkes Process to Model Underdispersed Acoustic Cues
A Hawkes point process describes self-exciting behaviour where event arrivals are triggered by historic events. These models are increasingly becoming a popular choice in analysing event-type data. Like all other inhomogeneous Poisson point processes, the waiting time between events in a Hawkes process is derived from an exponential distribution with mean one. However, as with many ecological and environmental data, this is an unrealistic assumption. We, therefore, extend and generalise the Hawkes process to account for potential under- or overdispersion in the waiting times between events by assuming the Weibull distribution as the foundation of the waiting times. We apply this model to the acoustic cue production times of sperm whales and show that our Weibull–Hawkes model better captures the inherent underdispersion in the interarrival times of echolocation clicks emitted by these whales.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.