移位和缩放吉尼布雷矩阵的 GMRES、伪谱和 Crouzeix 猜想

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Tyler Chen, Anne Greenbaum, Thomas Trogdon
{"title":"移位和缩放吉尼布雷矩阵的 GMRES、伪谱和 Crouzeix 猜想","authors":"Tyler Chen, Anne Greenbaum, Thomas Trogdon","doi":"10.1090/mcom/3963","DOIUrl":null,"url":null,"abstract":"<p>We study the GMRES algorithm applied to linear systems of equations involving a scaled and shifted <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N times upper N\"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">N\\times N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> matrix whose entries are independent complex Gaussians. When the right-hand side of this linear system is independent of this random matrix, the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N right-arrow normal infinity\"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">N\\to \\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> behavior of the GMRES residual error can be determined exactly. To handle cases where the right hand side depends on the random matrix, we study the pseudospectra and numerical range of Ginibre matrices and prove a restricted version of Crouzeix’s conjecture.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GMRES, pseudospectra, and Crouzeix’s conjecture for shifted and scaled Ginibre matrices\",\"authors\":\"Tyler Chen, Anne Greenbaum, Thomas Trogdon\",\"doi\":\"10.1090/mcom/3963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the GMRES algorithm applied to linear systems of equations involving a scaled and shifted <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N times upper N\\\"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">N\\\\times N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> matrix whose entries are independent complex Gaussians. When the right-hand side of this linear system is independent of this random matrix, the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N right-arrow normal infinity\\\"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">N\\\\to \\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> behavior of the GMRES residual error can be determined exactly. To handle cases where the right hand side depends on the random matrix, we study the pseudospectra and numerical range of Ginibre matrices and prove a restricted version of Crouzeix’s conjecture.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了应用于线性方程组的 GMRES 算法,该方程组涉及一个经过缩放和移位的 N × N N 次矩阵,该矩阵的条目是独立的复高斯。当这个线性方程组的右边独立于这个随机矩阵时,GMRES残余误差的 N → ∞ Nto \infty 行为就可以精确地确定。为了处理右手侧依赖于随机矩阵的情况,我们研究了吉尼布雷矩阵的伪谱和数值范围,并证明了克鲁齐猜想的限制版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GMRES, pseudospectra, and Crouzeix’s conjecture for shifted and scaled Ginibre matrices

We study the GMRES algorithm applied to linear systems of equations involving a scaled and shifted N × N N\times N matrix whose entries are independent complex Gaussians. When the right-hand side of this linear system is independent of this random matrix, the N N\to \infty behavior of the GMRES residual error can be determined exactly. To handle cases where the right hand side depends on the random matrix, we study the pseudospectra and numerical range of Ginibre matrices and prove a restricted version of Crouzeix’s conjecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信