{"title":"基体-断裂界面无摩擦接触混合维度孔力学模型的数值分析","authors":"Francesco Bonaldi, Jérôme Droniou, Roland Masson","doi":"10.1090/mcom/3949","DOIUrl":null,"url":null,"abstract":"<p>We present a complete numerical analysis for a general discretization of a coupled flow–mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix–fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix–fracture interfaces in order to cover a wide range of normal fracture conductivities.</p> <p>The numerical analysis is carried out in the Gradient Discretization framework (see J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin [<italic>The gradient discretisation method</italic>, Springer, Cham, 2018]), encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements (<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P 2\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) for the mechanical displacement coupled with face-wise constant (<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P 0\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbb P_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of a mixed-dimensional poromechanical model with frictionless contact at matrix–fracture interfaces\",\"authors\":\"Francesco Bonaldi, Jérôme Droniou, Roland Masson\",\"doi\":\"10.1090/mcom/3949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a complete numerical analysis for a general discretization of a coupled flow–mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix–fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix–fracture interfaces in order to cover a wide range of normal fracture conductivities.</p> <p>The numerical analysis is carried out in the Gradient Discretization framework (see J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin [<italic>The gradient discretisation method</italic>, Springer, Cham, 2018]), encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements (<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper P 2\\\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {P}_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) for the mechanical displacement coupled with face-wise constant (<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper P 0\\\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb P_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Numerical analysis of a mixed-dimensional poromechanical model with frictionless contact at matrix–fracture interfaces
We present a complete numerical analysis for a general discretization of a coupled flow–mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix–fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix–fracture interfaces in order to cover a wide range of normal fracture conductivities.
The numerical analysis is carried out in the Gradient Discretization framework (see J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin [The gradient discretisation method, Springer, Cham, 2018]), encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements (P2\mathbb {P}_2) for the mechanical displacement coupled with face-wise constant (P0\mathbb P_0) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.