{"title":"基体-断裂界面无摩擦接触混合维度孔力学模型的数值分析","authors":"Francesco Bonaldi, Jérôme Droniou, Roland Masson","doi":"10.1090/mcom/3949","DOIUrl":null,"url":null,"abstract":"<p>We present a complete numerical analysis for a general discretization of a coupled flow–mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix–fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix–fracture interfaces in order to cover a wide range of normal fracture conductivities.</p> <p>The numerical analysis is carried out in the Gradient Discretization framework (see J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin [<italic>The gradient discretisation method</italic>, Springer, Cham, 2018]), encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements (<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P 2\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) for the mechanical displacement coupled with face-wise constant (<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P 0\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbb P_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"16 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of a mixed-dimensional poromechanical model with frictionless contact at matrix–fracture interfaces\",\"authors\":\"Francesco Bonaldi, Jérôme Droniou, Roland Masson\",\"doi\":\"10.1090/mcom/3949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a complete numerical analysis for a general discretization of a coupled flow–mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix–fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix–fracture interfaces in order to cover a wide range of normal fracture conductivities.</p> <p>The numerical analysis is carried out in the Gradient Discretization framework (see J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin [<italic>The gradient discretisation method</italic>, Springer, Cham, 2018]), encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements (<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper P 2\\\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {P}_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) for the mechanical displacement coupled with face-wise constant (<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper P 0\\\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb P_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.</p>\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3949\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3949","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Numerical analysis of a mixed-dimensional poromechanical model with frictionless contact at matrix–fracture interfaces
We present a complete numerical analysis for a general discretization of a coupled flow–mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix–fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix–fracture interfaces in order to cover a wide range of normal fracture conductivities.
The numerical analysis is carried out in the Gradient Discretization framework (see J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin [The gradient discretisation method, Springer, Cham, 2018]), encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements (P2\mathbb {P}_2) for the mechanical displacement coupled with face-wise constant (P0\mathbb P_0) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.