{"title":"解析函数拉盖尔近似的收敛性分析","authors":"Haiyong Wang","doi":"10.1090/mcom/3942","DOIUrl":null,"url":null,"abstract":"<p>Laguerre spectral approximations play an important role in the development of efficient algorithms for problems in unbounded domains. In this paper, we present a comprehensive convergence rate analysis of Laguerre spectral approximations for analytic functions. By exploiting contour integral techniques from complex analysis, we prove that Laguerre projection and interpolation methods of degree <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> converge at the root-exponential rate <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis exp left-parenthesis minus 2 rho StartRoot n EndRoot right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>exp</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:msqrt> <mml:mi>n</mml:mi> </mml:msqrt> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\exp (-2\\rho \\sqrt {n}))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\rho >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when the underlying function is analytic inside and on a parabola with focus at the origin and vertex at <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"z equals minus rho squared\"> <mml:semantics> <mml:mrow> <mml:mi>z</mml:mi> <mml:mo>=</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:msup> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">z=-\\rho ^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As far as we know, this is the first rigorous proof of root-exponential convergence of Laguerre approximations for analytic functions. Several important applications of our analysis are also discussed, including Laguerre spectral differentiations, Gauss-Laguerre quadrature rules, the scaling factor and the Weeks method for the inversion of Laplace transform, and some sharp convergence rate estimates are derived. Numerical experiments are presented to verify the theoretical results.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"38 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence analysis of Laguerre approximations for analytic functions\",\"authors\":\"Haiyong Wang\",\"doi\":\"10.1090/mcom/3942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Laguerre spectral approximations play an important role in the development of efficient algorithms for problems in unbounded domains. In this paper, we present a comprehensive convergence rate analysis of Laguerre spectral approximations for analytic functions. By exploiting contour integral techniques from complex analysis, we prove that Laguerre projection and interpolation methods of degree <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> converge at the root-exponential rate <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis exp left-parenthesis minus 2 rho StartRoot n EndRoot right-parenthesis right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>exp</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:msqrt> <mml:mi>n</mml:mi> </mml:msqrt> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(\\\\exp (-2\\\\rho \\\\sqrt {n}))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"rho greater-than 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\rho >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when the underlying function is analytic inside and on a parabola with focus at the origin and vertex at <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"z equals minus rho squared\\\"> <mml:semantics> <mml:mrow> <mml:mi>z</mml:mi> <mml:mo>=</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:msup> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">z=-\\\\rho ^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As far as we know, this is the first rigorous proof of root-exponential convergence of Laguerre approximations for analytic functions. Several important applications of our analysis are also discussed, including Laguerre spectral differentiations, Gauss-Laguerre quadrature rules, the scaling factor and the Weeks method for the inversion of Laplace transform, and some sharp convergence rate estimates are derived. Numerical experiments are presented to verify the theoretical results.</p>\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3942\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3942","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
拉盖尔谱近似在无界域问题的高效算法开发中发挥着重要作用。在本文中,我们对分析函数的拉盖尔谱近似进行了全面的收敛率分析。通过利用复分析中的等值线积分技术,我们证明了 n n 级的拉盖尔投影和插值方法以根指数收敛率 O ( exp ( - 2 ρ n ) ) O(exp (-2\rho \sqrt {n})),其中 ρ > 0 \rho >0,当基础函数在抛物线内部和抛物线上解析时,抛物线的焦点在原点,顶点在 z = - ρ 2 z=-\rho ^2。据我们所知,这是第一次严格证明分析函数的拉盖尔近似的根指数收敛性。我们的分析还讨论了几个重要应用,包括拉盖尔谱微分、高斯-拉盖尔正交规则、拉普拉斯变换反演的缩放因子和威克斯方法,并推导出一些尖锐的收敛率估计值。还给出了数值实验来验证理论结果。
Convergence analysis of Laguerre approximations for analytic functions
Laguerre spectral approximations play an important role in the development of efficient algorithms for problems in unbounded domains. In this paper, we present a comprehensive convergence rate analysis of Laguerre spectral approximations for analytic functions. By exploiting contour integral techniques from complex analysis, we prove that Laguerre projection and interpolation methods of degree nn converge at the root-exponential rate O(exp(−2ρn))O(\exp (-2\rho \sqrt {n})) with ρ>0\rho >0 when the underlying function is analytic inside and on a parabola with focus at the origin and vertex at z=−ρ2z=-\rho ^2. As far as we know, this is the first rigorous proof of root-exponential convergence of Laguerre approximations for analytic functions. Several important applications of our analysis are also discussed, including Laguerre spectral differentiations, Gauss-Laguerre quadrature rules, the scaling factor and the Weeks method for the inversion of Laplace transform, and some sharp convergence rate estimates are derived. Numerical experiments are presented to verify the theoretical results.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.