无价之宝

MARK J. SCHERVISH, TEDDY SEIDENFELD, JOSEPH B. KADANE, RUOBIN GONG, RAFAEL B. STERN
{"title":"无价之宝","authors":"MARK J. SCHERVISH, TEDDY SEIDENFELD, JOSEPH B. KADANE, RUOBIN GONG, RAFAEL B. STERN","doi":"10.1017/s1755020324000017","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we show how to represent a non-Archimedean preference over a set of random quantities by a nonstandard utility function. Non-Archimedean preferences arise when some random quantities have no fair price. Two common situations give rise to non-Archimedean preferences: random quantities whose values must be greater than every real number, and strict preferences between random quantities that are deemed closer in value than every positive real number. We also show how to extend a non-Archimedean preference to a larger set of random quantities. The random quantities that we consider include real-valued random variables, horse lotteries, and acts in the theory of Savage. In addition, we weaken the state-independent utility assumptions made by the existing theories and give conditions under which the utility that represents preference is the expected value of a state-dependent utility with respect to a probability over states.</p>","PeriodicalId":501566,"journal":{"name":"The Review of Symbolic Logic","volume":"182 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WHEN NO PRICE IS RIGHT\",\"authors\":\"MARK J. SCHERVISH, TEDDY SEIDENFELD, JOSEPH B. KADANE, RUOBIN GONG, RAFAEL B. STERN\",\"doi\":\"10.1017/s1755020324000017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we show how to represent a non-Archimedean preference over a set of random quantities by a nonstandard utility function. Non-Archimedean preferences arise when some random quantities have no fair price. Two common situations give rise to non-Archimedean preferences: random quantities whose values must be greater than every real number, and strict preferences between random quantities that are deemed closer in value than every positive real number. We also show how to extend a non-Archimedean preference to a larger set of random quantities. The random quantities that we consider include real-valued random variables, horse lotteries, and acts in the theory of Savage. In addition, we weaken the state-independent utility assumptions made by the existing theories and give conditions under which the utility that represents preference is the expected value of a state-dependent utility with respect to a probability over states.</p>\",\"PeriodicalId\":501566,\"journal\":{\"name\":\"The Review of Symbolic Logic\",\"volume\":\"182 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Review of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s1755020324000017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Review of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1755020324000017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们展示了如何用非标准效用函数来表示对一组随机数量的非阿基米德偏好。当某些随机量没有公平价格时,就会出现非阿基米德偏好。产生非阿基米德偏好的两种常见情况是:随机量的值必须大于每一个实数,以及随机量之间的严格偏好,这些随机量的值被认为比每一个正实数更接近。我们还展示了如何将非阿基米德偏好扩展到更大的随机量集合。我们考虑的随机量包括实值随机变量、马彩票和萨维奇理论中的行为。此外,我们还弱化了现有理论中与状态无关的效用假设,并给出了代表偏好的效用是与状态有关的效用的期望值的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WHEN NO PRICE IS RIGHT

In this paper, we show how to represent a non-Archimedean preference over a set of random quantities by a nonstandard utility function. Non-Archimedean preferences arise when some random quantities have no fair price. Two common situations give rise to non-Archimedean preferences: random quantities whose values must be greater than every real number, and strict preferences between random quantities that are deemed closer in value than every positive real number. We also show how to extend a non-Archimedean preference to a larger set of random quantities. The random quantities that we consider include real-valued random variables, horse lotteries, and acts in the theory of Savage. In addition, we weaken the state-independent utility assumptions made by the existing theories and give conditions under which the utility that represents preference is the expected value of a state-dependent utility with respect to a probability over states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信