一种新的二分对称张量有限元空间及其在双谐波方程中的应用

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Long Chen, Xuehai Huang
{"title":"一种新的二分对称张量有限元空间及其在双谐波方程中的应用","authors":"Long Chen, Xuehai Huang","doi":"10.1090/mcom/3957","DOIUrl":null,"url":null,"abstract":"<p>A new <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H left-parenthesis d i v d i v right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>div</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>div</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H(\\operatorname {div}\\operatorname {div})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-conforming finite element is presented, which avoids the need for supersmoothness by redistributing the degrees of freedom to edges and faces. This leads to a hybridizable mixed method with superconvergence for the biharmonic equation. Moreover, new finite element divdiv complexes are established. Finally, new weak Galerkin and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript 0\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> discontinuous Galerkin methods for the biharmonic equation are derived.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"38 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new div-div-conforming symmetric tensor finite element space with applications to the biharmonic equation\",\"authors\":\"Long Chen, Xuehai Huang\",\"doi\":\"10.1090/mcom/3957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H left-parenthesis d i v d i v right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>div</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>div</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">H(\\\\operatorname {div}\\\\operatorname {div})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-conforming finite element is presented, which avoids the need for supersmoothness by redistributing the degrees of freedom to edges and faces. This leads to a hybridizable mixed method with superconvergence for the biharmonic equation. Moreover, new finite element divdiv complexes are established. Finally, new weak Galerkin and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript 0\\\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">C^0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> discontinuous Galerkin methods for the biharmonic equation are derived.</p>\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3957\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3957","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的 H ( div div ) H(\operatorname {div}\operatorname {div}) 顺应有限元,通过将自由度重新分配到边和面,避免了对超平滑性的需求。这就为双谐波方程带来了一种具有超收敛性的可混合混合方法。此外,还建立了新的有限元 divdiv 复数。最后,推导出了双谐波方程的新弱 Galerkin 方法和 C 0 C^0 非连续 Galerkin 方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new div-div-conforming symmetric tensor finite element space with applications to the biharmonic equation

A new H ( div div ) H(\operatorname {div}\operatorname {div}) -conforming finite element is presented, which avoids the need for supersmoothness by redistributing the degrees of freedom to edges and faces. This leads to a hybridizable mixed method with superconvergence for the biharmonic equation. Moreover, new finite element divdiv complexes are established. Finally, new weak Galerkin and C 0 C^0 discontinuous Galerkin methods for the biharmonic equation are derived.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信