{"title":"具有乘法噪声的朗格文模拟退火算法的收敛性","authors":"Pierre Bras, Gilles Pagès","doi":"10.1090/mcom/3899","DOIUrl":null,"url":null,"abstract":"<p>We study the convergence of Langevin-Simulated Annealing type algorithms with multiplicative noise, i.e. for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V colon double-struck upper R Superscript d Baseline right-arrow double-struck upper R\"> <mml:semantics> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">V : \\mathbb {R}^d \\to \\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a potential function to minimize, we consider the stochastic differential equation <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d upper Y Subscript t Baseline equals minus sigma sigma Superscript down-tack Baseline nabla upper V left-parenthesis upper Y Subscript t Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>Y</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:msup> <mml:mi>σ<!-- σ --></mml:mi> <mml:mi mathvariant=\"normal\">⊤<!-- ⊤ --></mml:mi> </mml:msup> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>V</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>Y</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">dY_t = - \\sigma \\sigma ^\\top \\nabla V(Y_t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d t plus a left-parenthesis t right-parenthesis sigma left-parenthesis upper Y Subscript t Baseline right-parenthesis d upper W Subscript t plus a left-parenthesis t right-parenthesis squared normal upper Upsilon left-parenthesis upper Y Subscript t Baseline right-parenthesis d t\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> <mml:mo>+</mml:mo> <mml:mi>a</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>Y</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>+</mml:mo> <mml:mi>a</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mn>2</mml:mn> </mml:msup> <mml:mi mathvariant=\"normal\">Υ<!-- Υ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>Y</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">dt + a(t)\\sigma (Y_t)dW_t + a(t)^2\\Upsilon (Y_t)dt</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper W Subscript t Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(W_t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a Brownian motion, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma colon double-struck upper R Superscript d Baseline right-arrow script upper M Subscript d Baseline left-parenthesis double-struck upper R right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">M</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sigma : \\mathbb {R}^d \\to \\mathcal {M}_d(\\mathbb {R})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an adaptive (multiplicative) noise, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a colon double-struck upper R Superscript plus Baseline right-arrow double-struck upper R Superscript plus\"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">a : \\mathbb {R}^+ \\to \\mathbb {R}^+</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a function decreasing to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\"application/x-tex\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Upsilon\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Υ<!-- Υ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Upsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a correction term. This setting can be applied to optimization problems arising in Machine Learning; allowing <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma\"> <mml:semantics> <mml:mi>σ<!-- σ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to depend on the position brings faster convergence in comparison with the classical Langevin equation <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d upper Y Subscript t Baseline equals minus nabla upper V left-parenthesis upper Y Subscript t Baseline right-parenthesis d t plus sigma d upper W Subscript t\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>Y</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>V</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>Y</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> <mml:mo>+</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">dY_t = -\\nabla V(Y_t)dt + \\sigma dW_t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The case where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma\"> <mml:semantics> <mml:mi>σ<!-- σ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a constant matrix has been extensively studied; however little attention has been paid to the general case. We prove the convergence for the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 1\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Wasserstein distance of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y Subscript t\"> <mml:semantics> <mml:msub> <mml:mi>Y</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">Y_t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and of the associated Euler scheme <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y overbar Subscript t\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mover> <mml:mi>Y</mml:mi> <mml:mo stretchy=\"false\">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:mi>t</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\bar {Y}_t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to some measure <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu Superscript star\"> <mml:semantics> <mml:msup> <mml:mi>ν<!-- ν --></mml:mi> <mml:mo>⋆<!-- ⋆ --></mml:mo> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\nu ^\\star</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which is supported by <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a r g m i n left-parenthesis upper V right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>argmin</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {argmin}(V)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and give rates of convergence to the instantaneous Gibbs measure <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu Subscript a left-parenthesis t right-parenthesis\"> <mml:semantics> <mml:msub> <mml:mi>ν<!-- ν --></mml:mi> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\nu _{a(t)}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of density <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"proportional-to exp left-parenthesis minus 2 upper V left-parenthesis x right-parenthesis slash a left-parenthesis t right-parenthesis squared right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo>∝<!-- ∝ --></mml:mo> <mml:mi>exp</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mi>V</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>a</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\propto \\exp (-2V(x)/a(t)^2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. To do so, we first consider the case where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a\"> <mml:semantics> <mml:mi>a</mml:mi> <mml:annotation encoding=\"application/x-tex\">a</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a piecewise constant function. We find again the classical schedule <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a left-parenthesis t right-parenthesis equals upper A log Superscript negative 1 slash 2 Baseline left-parenthesis t right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>A</mml:mi> <mml:msup> <mml:mi>log</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">a(t) = A\\log ^{-1/2}(t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We then prove the convergence for the general case by giving bounds for the Wasserstein distance to the stepwise constant case using ergodicity properties.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"156 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence of Langevin-simulated annealing algorithms with multiplicative noise\",\"authors\":\"Pierre Bras, Gilles Pagès\",\"doi\":\"10.1090/mcom/3899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the convergence of Langevin-Simulated Annealing type algorithms with multiplicative noise, i.e. for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V colon double-struck upper R Superscript d Baseline right-arrow double-struck upper R\\\"> <mml:semantics> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">V : \\\\mathbb {R}^d \\\\to \\\\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a potential function to minimize, we consider the stochastic differential equation <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d upper Y Subscript t Baseline equals minus sigma sigma Superscript down-tack Baseline nabla upper V left-parenthesis upper Y Subscript t Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>Y</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:msup> <mml:mi>σ<!-- σ --></mml:mi> <mml:mi mathvariant=\\\"normal\\\">⊤<!-- ⊤ --></mml:mi> </mml:msup> <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi> <mml:mi>V</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>Y</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">dY_t = - \\\\sigma \\\\sigma ^\\\\top \\\\nabla V(Y_t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d t plus a left-parenthesis t right-parenthesis sigma left-parenthesis upper Y Subscript t Baseline right-parenthesis d upper W Subscript t plus a left-parenthesis t right-parenthesis squared normal upper Upsilon left-parenthesis upper Y Subscript t Baseline right-parenthesis d t\\\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> <mml:mo>+</mml:mo> <mml:mi>a</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>Y</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>+</mml:mo> <mml:mi>a</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mn>2</mml:mn> </mml:msup> <mml:mi mathvariant=\\\"normal\\\">Υ<!-- Υ --></mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>Y</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">dt + a(t)\\\\sigma (Y_t)dW_t + a(t)^2\\\\Upsilon (Y_t)dt</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper W Subscript t Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(W_t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a Brownian motion, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma colon double-struck upper R Superscript d Baseline right-arrow script upper M Subscript d Baseline left-parenthesis double-struck upper R right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">M</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma : \\\\mathbb {R}^d \\\\to \\\\mathcal {M}_d(\\\\mathbb {R})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an adaptive (multiplicative) noise, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a colon double-struck upper R Superscript plus Baseline right-arrow double-struck upper R Superscript plus\\\"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">a : \\\\mathbb {R}^+ \\\\to \\\\mathbb {R}^+</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a function decreasing to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0\\\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Upsilon\\\"> <mml:semantics> <mml:mi mathvariant=\\\"normal\\\">Υ<!-- Υ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Upsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a correction term. This setting can be applied to optimization problems arising in Machine Learning; allowing <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma\\\"> <mml:semantics> <mml:mi>σ<!-- σ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to depend on the position brings faster convergence in comparison with the classical Langevin equation <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d upper Y Subscript t Baseline equals minus nabla upper V left-parenthesis upper Y Subscript t Baseline right-parenthesis d t plus sigma d upper W Subscript t\\\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>Y</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi> <mml:mi>V</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>Y</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> <mml:mo>+</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">dY_t = -\\\\nabla V(Y_t)dt + \\\\sigma dW_t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The case where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma\\\"> <mml:semantics> <mml:mi>σ<!-- σ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a constant matrix has been extensively studied; however little attention has been paid to the general case. We prove the convergence for the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Superscript 1\\\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">L^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Wasserstein distance of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Y Subscript t\\\"> <mml:semantics> <mml:msub> <mml:mi>Y</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">Y_t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and of the associated Euler scheme <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Y overbar Subscript t\\\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mover> <mml:mi>Y</mml:mi> <mml:mo stretchy=\\\"false\\\">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:mi>t</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\bar {Y}_t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to some measure <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"nu Superscript star\\\"> <mml:semantics> <mml:msup> <mml:mi>ν<!-- ν --></mml:mi> <mml:mo>⋆<!-- ⋆ --></mml:mo> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\nu ^\\\\star</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which is supported by <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a r g m i n left-parenthesis upper V right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>argmin</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\operatorname {argmin}(V)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and give rates of convergence to the instantaneous Gibbs measure <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"nu Subscript a left-parenthesis t right-parenthesis\\\"> <mml:semantics> <mml:msub> <mml:mi>ν<!-- ν --></mml:mi> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\nu _{a(t)}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of density <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"proportional-to exp left-parenthesis minus 2 upper V left-parenthesis x right-parenthesis slash a left-parenthesis t right-parenthesis squared right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo>∝<!-- ∝ --></mml:mo> <mml:mi>exp</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mi>V</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>a</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\propto \\\\exp (-2V(x)/a(t)^2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. To do so, we first consider the case where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a\\\"> <mml:semantics> <mml:mi>a</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">a</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a piecewise constant function. We find again the classical schedule <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a left-parenthesis t right-parenthesis equals upper A log Superscript negative 1 slash 2 Baseline left-parenthesis t right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>A</mml:mi> <mml:msup> <mml:mi>log</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">a(t) = A\\\\log ^{-1/2}(t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We then prove the convergence for the general case by giving bounds for the Wasserstein distance to the stepwise constant case using ergodicity properties.</p>\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"156 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3899\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3899","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了带有乘法噪声的朗格文模拟退火算法的收敛性,即对于 V : R d → R V :\mathbb {R}^d \to \mathbb {R} 的势函数最小化、我们考虑随机微分方程 d Y t = - σ σ ⊤∇ V ( Y t ) dY_t = -\V(Y_t) d t + a ( t ) σ ( Y t ) d W t + a ( t ) 2 Υ ( Y t ) d t dt + a(t)\sigma (Y_t)dW_t + a(t)^2\Upsilon (Y_t)dt 、其中 ( W t ) (W_t) 是布朗运动,其中 σ : R d → M d ( R ) σ : \mathbb {R}^d \to \mathcal {M}_d(\mathbb {R}) 是一个自适应(乘法)噪声,其中 a : R + → R + a : \mathbb {R}^+ \to \mathbb {R}^+ 是一个递减到 0 0 的函数,Υ \Upsilon 是一个修正项。这种设置可以应用于机器学习中出现的优化问题;与经典的朗格文方程 d Y t = -∇ V ( Y t ) d t + σ d W t dY_t = -\nabla V(Y_t)dt + \sigma dW_t 相比,允许 σ \sigma 取决于位置会带来更快的收敛速度。σ \sigma 是常量矩阵的情况已被广泛研究,但对一般情况的研究却很少。我们证明了 Y t 的 L 1 L^1 - Wasserstein 距离的收敛性。我们证明了 Y t Y_t 和相关欧拉方案 Y ¯ t (bar {Y}_t)的瓦瑟斯坦距离收敛于某个由 argmin ( V ) \operatorname {argmin}(V) 支持的度量 ν ⋆ \nu ^\star ,并给出了密度 ∝ exp ( - 2 V ( x ) / a ( t ) 2 ) 的瞬时吉布斯度量 ν a ( t ) \nu _{a(t)} 的收敛速率。 \propto \exp (-2V(x)/a(t)^2) .为此,我们首先考虑 a a 是片断常数函数的情况。我们再次找到经典的时间表 a ( t ) = A log - 1 / 2 ( t ) a(t) = A\log ^{-1/2}(t) 。然后,我们利用遍历特性给出了步进常数情况下的瓦瑟斯坦距离的边界,从而证明了一般情况下的收敛性。
Convergence of Langevin-simulated annealing algorithms with multiplicative noise
We study the convergence of Langevin-Simulated Annealing type algorithms with multiplicative noise, i.e. for V:Rd→RV : \mathbb {R}^d \to \mathbb {R} a potential function to minimize, we consider the stochastic differential equation dYt=−σσ⊤∇V(Yt)dY_t = - \sigma \sigma ^\top \nabla V(Y_t)dt+a(t)σ(Yt)dWt+a(t)2Υ(Yt)dtdt + a(t)\sigma (Y_t)dW_t + a(t)^2\Upsilon (Y_t)dt, where (Wt)(W_t) is a Brownian motion, where σ:Rd→Md(R)\sigma : \mathbb {R}^d \to \mathcal {M}_d(\mathbb {R}) is an adaptive (multiplicative) noise, where a:R+→R+a : \mathbb {R}^+ \to \mathbb {R}^+ is a function decreasing to 00 and where Υ\Upsilon is a correction term. This setting can be applied to optimization problems arising in Machine Learning; allowing σ\sigma to depend on the position brings faster convergence in comparison with the classical Langevin equation dYt=−∇V(Yt)dt+σdWtdY_t = -\nabla V(Y_t)dt + \sigma dW_t. The case where σ\sigma is a constant matrix has been extensively studied; however little attention has been paid to the general case. We prove the convergence for the L1L^1-Wasserstein distance of YtY_t and of the associated Euler scheme Y¯t\bar {Y}_t to some measure ν⋆\nu ^\star which is supported by argmin(V)\operatorname {argmin}(V) and give rates of convergence to the instantaneous Gibbs measure νa(t)\nu _{a(t)} of density ∝exp(−2V(x)/a(t)2)\propto \exp (-2V(x)/a(t)^2). To do so, we first consider the case where aa is a piecewise constant function. We find again the classical schedule a(t)=Alog−1/2(t)a(t) = A\log ^{-1/2}(t). We then prove the convergence for the general case by giving bounds for the Wasserstein distance to the stepwise constant case using ergodicity properties.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.