{"title":"简单整联平面集的本征几何学","authors":"David A. Herron","doi":"10.1007/s40315-024-00527-6","DOIUrl":null,"url":null,"abstract":"<p>We prove that the metric completion of the intrinsic length space associated with a simply and rectifiably connected plane set is a Hadamard space. We also characterize when such a space is Gromov hyperbolic.</p>","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":"60 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Intrinsic Geometry of Simply and Rectifiably Connected Plane Sets\",\"authors\":\"David A. Herron\",\"doi\":\"10.1007/s40315-024-00527-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that the metric completion of the intrinsic length space associated with a simply and rectifiably connected plane set is a Hadamard space. We also characterize when such a space is Gromov hyperbolic.</p>\",\"PeriodicalId\":49088,\"journal\":{\"name\":\"Computational Methods and Function Theory\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods and Function Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-024-00527-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods and Function Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00527-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Intrinsic Geometry of Simply and Rectifiably Connected Plane Sets
We prove that the metric completion of the intrinsic length space associated with a simply and rectifiably connected plane set is a Hadamard space. We also characterize when such a space is Gromov hyperbolic.
期刊介绍:
CMFT is an international mathematics journal which publishes carefully selected original research papers in complex analysis (in a broad sense), and on applications or computational methods related to complex analysis. Survey articles of high standard and current interest can be considered for publication as well.