具有一个或两个顶点度的图中的少量哈密顿循环

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Jan Goedgebeur, Jorik Jooken, On-Hei Solomon Lo, Ben Seamone, Carol Zamfirescu
{"title":"具有一个或两个顶点度的图中的少量哈密顿循环","authors":"Jan Goedgebeur, Jorik Jooken, On-Hei Solomon Lo, Ben Seamone, Carol Zamfirescu","doi":"10.1090/mcom/3943","DOIUrl":null,"url":null,"abstract":"<p>Inspired by Sheehan’s conjecture that no <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"4\"> <mml:semantics> <mml:mn>4</mml:mn> <mml:annotation encoding=\"application/x-tex\">4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-regular graph contains exactly one hamiltonian cycle, we prove results on hamiltonian cycles in regular graphs and nearly regular graphs. We fully disprove a conjecture of Haythorpe on the minimum number of hamiltonian cycles in regular hamiltonian graphs, thereby extending a result of Zamfirescu, as well as correct and complement Haythorpe’s computational enumerative results from [Exp. Math. <bold>27</bold> (2018), no. 4, 426–430]. Thereafter, we use the Lovász Local Lemma to extend Thomassen’s independent dominating set method. This extension allows us to find a second hamiltonian cycle that inherits linearly many edges from the first hamiltonian cycle. Regarding the limitations of this method, we answer a question of Haxell, Seamone, and Verstraete, and settle the first open case of a problem of Thomassen by showing that for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k element-of StartSet 5 comma 6 EndSet\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mn>5</mml:mn> <mml:mo>,</mml:mo> <mml:mn>6</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k \\in \\{5, 6\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> there exist infinitely many <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-regular hamiltonian graphs having no independent dominating set with respect to a prescribed hamiltonian cycle. Motivated by an observation of Aldred and Thomassen, we prove that for every <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"kappa element-of StartSet 2 comma 3 EndSet\"> <mml:semantics> <mml:mrow> <mml:mi>κ<!-- κ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\kappa \\in \\{ 2, 3 \\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and any positive integer <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there are infinitely many non-regular graphs of connectivity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"kappa\"> <mml:semantics> <mml:mi>κ<!-- κ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\kappa</mml:annotation> </mml:semantics> </mml:math> </inline-formula> containing exactly one hamiltonian cycle and in which every vertex has degree <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 k\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>k</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"26 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Few hamiltonian cycles in graphs with one or two vertex degrees\",\"authors\":\"Jan Goedgebeur, Jorik Jooken, On-Hei Solomon Lo, Ben Seamone, Carol Zamfirescu\",\"doi\":\"10.1090/mcom/3943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inspired by Sheehan’s conjecture that no <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"4\\\"> <mml:semantics> <mml:mn>4</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-regular graph contains exactly one hamiltonian cycle, we prove results on hamiltonian cycles in regular graphs and nearly regular graphs. We fully disprove a conjecture of Haythorpe on the minimum number of hamiltonian cycles in regular hamiltonian graphs, thereby extending a result of Zamfirescu, as well as correct and complement Haythorpe’s computational enumerative results from [Exp. Math. <bold>27</bold> (2018), no. 4, 426–430]. Thereafter, we use the Lovász Local Lemma to extend Thomassen’s independent dominating set method. This extension allows us to find a second hamiltonian cycle that inherits linearly many edges from the first hamiltonian cycle. Regarding the limitations of this method, we answer a question of Haxell, Seamone, and Verstraete, and settle the first open case of a problem of Thomassen by showing that for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k element-of StartSet 5 comma 6 EndSet\\\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:mn>5</mml:mn> <mml:mo>,</mml:mo> <mml:mn>6</mml:mn> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">k \\\\in \\\\{5, 6\\\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> there exist infinitely many <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k\\\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-regular hamiltonian graphs having no independent dominating set with respect to a prescribed hamiltonian cycle. Motivated by an observation of Aldred and Thomassen, we prove that for every <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"kappa element-of StartSet 2 comma 3 EndSet\\\"> <mml:semantics> <mml:mrow> <mml:mi>κ<!-- κ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\kappa \\\\in \\\\{ 2, 3 \\\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and any positive integer <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k\\\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there are infinitely many non-regular graphs of connectivity <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"kappa\\\"> <mml:semantics> <mml:mi>κ<!-- κ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\kappa</mml:annotation> </mml:semantics> </mml:math> </inline-formula> containing exactly one hamiltonian cycle and in which every vertex has degree <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3\\\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 k\\\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>k</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">2k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3943\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3943","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

受希恩(Sheehan)关于没有任何 4 4 不规则图恰好包含一个哈密尔顿循环的猜想的启发,我们证明了关于规则图和近似规则图中哈密尔顿循环的结果。我们完全推翻了海索普关于正则哈密顿图中哈密顿循环的最小数目的猜想,从而扩展了扎姆费斯库的一个结果,并修正和补充了海索普在[Exp. Math. 27 (2018),no. 4,426-430]中的计算枚举结果。此后,我们利用洛瓦兹局部定理(Lovász Local Lemma)扩展了托马森的独立支配集方法。通过这种扩展,我们可以找到第二个哈密顿循环,它从第一个哈密顿循环中继承了线性多条边。关于这种方法的局限性,我们回答了哈克塞尔(Haxell)、西蒙(Seamone)和韦斯特拉特(Verstraete)的一个问题,并通过证明对于 k ∈ { 5 , 6 } k \ in \{5, 6\} 存在无限多的 k k -regular 哈密尔顿图,这些图相对于规定的哈密尔顿循环没有独立支配集,解决了托马森问题的第一个开放案例。受 Aldred 和 Thomassen 的观察结果的启发,我们证明了对于每一个 κ ∈ { 2 , 3 },都有一个独立的支配集。 \和任意正整数 k k,存在无限多的连通性 κ \kappa 的非规则图,其中包含一个哈密顿循环,并且每个顶点都有 3 3 或 2 k 2k 度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Few hamiltonian cycles in graphs with one or two vertex degrees

Inspired by Sheehan’s conjecture that no 4 4 -regular graph contains exactly one hamiltonian cycle, we prove results on hamiltonian cycles in regular graphs and nearly regular graphs. We fully disprove a conjecture of Haythorpe on the minimum number of hamiltonian cycles in regular hamiltonian graphs, thereby extending a result of Zamfirescu, as well as correct and complement Haythorpe’s computational enumerative results from [Exp. Math. 27 (2018), no. 4, 426–430]. Thereafter, we use the Lovász Local Lemma to extend Thomassen’s independent dominating set method. This extension allows us to find a second hamiltonian cycle that inherits linearly many edges from the first hamiltonian cycle. Regarding the limitations of this method, we answer a question of Haxell, Seamone, and Verstraete, and settle the first open case of a problem of Thomassen by showing that for k { 5 , 6 } k \in \{5, 6\} there exist infinitely many k k -regular hamiltonian graphs having no independent dominating set with respect to a prescribed hamiltonian cycle. Motivated by an observation of Aldred and Thomassen, we prove that for every κ { 2 , 3 } \kappa \in \{ 2, 3 \} and any positive integer k k , there are infinitely many non-regular graphs of connectivity κ \kappa containing exactly one hamiltonian cycle and in which every vertex has degree 3 3 or 2 k 2k .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信