广义强单项式群的有理群代数:原始幂等数和单位

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Gurmeet Bakshi, Jyoti Garg, Gabriela Olteanu
{"title":"广义强单项式群的有理群代数:原始幂等数和单位","authors":"Gurmeet Bakshi, Jyoti Garg, Gabriela Olteanu","doi":"10.1090/mcom/3937","DOIUrl":null,"url":null,"abstract":"<p>We present a method to explicitly compute a complete set of orthogonal primitive idempotents in a simple component with Schur index 1 of a rational group algebra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q upper G\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a finite generalized strongly monomial group. For the same groups with no exceptional simple components in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q upper G\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we describe a subgroup of finite index in the group of units <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper U left-parenthesis double-struck upper Z upper G right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"script\">U</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {U}(\\mathbb {Z}G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the integral group ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z upper G\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that is generated by three nilpotent groups for which we give explicit description of their generators. We exemplify the theoretical constructions with a detailed concrete example to illustrate the theory. We also show that the Frobenius groups of odd order with a cyclic complement are a class of generalized strongly monomial groups where the theory developed in this paper is applicable.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"147 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational group algebras of generalized strongly monomial groups: Primitive idempotents and units\",\"authors\":\"Gurmeet Bakshi, Jyoti Garg, Gabriela Olteanu\",\"doi\":\"10.1090/mcom/3937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a method to explicitly compute a complete set of orthogonal primitive idempotents in a simple component with Schur index 1 of a rational group algebra <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Q upper G\\\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi> </mml:mrow> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Q}G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a finite generalized strongly monomial group. For the same groups with no exceptional simple components in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Q upper G\\\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi> </mml:mrow> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Q}G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we describe a subgroup of finite index in the group of units <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper U left-parenthesis double-struck upper Z upper G right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">U</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:mi>G</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {U}(\\\\mathbb {Z}G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the integral group ring <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Z upper G\\\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Z}G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that is generated by three nilpotent groups for which we give explicit description of their generators. We exemplify the theoretical constructions with a detailed concrete example to illustrate the theory. We also show that the Frobenius groups of odd order with a cyclic complement are a class of generalized strongly monomial groups where the theory developed in this paper is applicable.</p>\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"147 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3937\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3937","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于有限广义强单项式群 G G,我们提出了一种明确计算有理群代数 Q G \mathbb {Q}G 中舒尔指数为 1 的简单分量中完整的正交原始幂级数的方法。对于 Q G \mathbb {Q}G 中没有特殊简单成分的相同群,我们描述了积分群环 Z G \mathbb {Z}G 的单位群 U ( Z G ) \mathcal {U}(\mathbb {Z}G) 中的有限指数子群,该子群由三个零能群生成,我们给出了它们的生成子的明确描述。我们用一个详细的具体例子来举例说明理论构造。我们还证明了具有循环补集的奇阶弗罗贝纽斯群是一类广义强单项式群,本文所建立的理论适用于这类群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational group algebras of generalized strongly monomial groups: Primitive idempotents and units

We present a method to explicitly compute a complete set of orthogonal primitive idempotents in a simple component with Schur index 1 of a rational group algebra Q G \mathbb {Q}G for G G a finite generalized strongly monomial group. For the same groups with no exceptional simple components in Q G \mathbb {Q}G , we describe a subgroup of finite index in the group of units U ( Z G ) \mathcal {U}(\mathbb {Z}G) of the integral group ring Z G \mathbb {Z}G that is generated by three nilpotent groups for which we give explicit description of their generators. We exemplify the theoretical constructions with a detailed concrete example to illustrate the theory. We also show that the Frobenius groups of odd order with a cyclic complement are a class of generalized strongly monomial groups where the theory developed in this paper is applicable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信