{"title":"论紧凑集超空间的一般分形维数","authors":"Dandan Cheng , Zhiming Li , Bilel Selmi","doi":"10.1016/j.fss.2024.108998","DOIUrl":null,"url":null,"abstract":"<div><p>Consider a separable metric space <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span>, and let <span><math><mo>(</mo><mi>K</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mover><mrow><mi>d</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span> denote the space of non-empty compact subsets of <em>X</em> equipped with the Hausdorff metric. This paper aims to introduce and investigate the concepts of two general fractal dimensions and general dimensions within the framework of <span><math><mo>(</mo><mi>K</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mover><mrow><mi>d</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span>. In particular, we explore a relationship between the general fractal dimensions of a set <em>Z</em> of a self-similar sequence space and their counterparts in the space of compact subsets <span><math><mi>K</mi><mo>(</mo><mi>Z</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the general fractal dimensions of hyperspace of compact sets\",\"authors\":\"Dandan Cheng , Zhiming Li , Bilel Selmi\",\"doi\":\"10.1016/j.fss.2024.108998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Consider a separable metric space <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span>, and let <span><math><mo>(</mo><mi>K</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mover><mrow><mi>d</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span> denote the space of non-empty compact subsets of <em>X</em> equipped with the Hausdorff metric. This paper aims to introduce and investigate the concepts of two general fractal dimensions and general dimensions within the framework of <span><math><mo>(</mo><mi>K</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mover><mrow><mi>d</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span>. In particular, we explore a relationship between the general fractal dimensions of a set <em>Z</em> of a self-similar sequence space and their counterparts in the space of compact subsets <span><math><mi>K</mi><mo>(</mo><mi>Z</mi><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":55130,\"journal\":{\"name\":\"Fuzzy Sets and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Sets and Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165011424001441\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011424001441","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
考虑一个可分离的度量空间 (X,d),让 (K(X),d˜) 表示 X 的非空紧凑子集空间,该子集具有 Hausdorff 度量。本文旨在介绍和研究 (K(X),d˜) 框架内的两个一般分形维度和一般维度的概念。特别是,我们将探讨自相似序列空间集合 Z 的一般分形维数与它们在紧凑子集空间 K(Z) 中的对应维数之间的关系。
On the general fractal dimensions of hyperspace of compact sets
Consider a separable metric space , and let denote the space of non-empty compact subsets of X equipped with the Hausdorff metric. This paper aims to introduce and investigate the concepts of two general fractal dimensions and general dimensions within the framework of . In particular, we explore a relationship between the general fractal dimensions of a set Z of a self-similar sequence space and their counterparts in the space of compact subsets .
期刊介绍:
Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies.
In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.