Samah El Mohtar, Olivier Le Maître, Omar Knio, Ibrahim Hoteit
{"title":"迭代数据驱动的代用物构建,用于从图像轮廓中高效贝叶斯识别溢油源参数","authors":"Samah El Mohtar, Olivier Le Maître, Omar Knio, Ibrahim Hoteit","doi":"10.1007/s10596-024-10288-9","DOIUrl":null,"url":null,"abstract":"<p>Identifying the source of an oil spill is an essential step in environmental forensics. The Bayesian approach allows to estimate the source parameters of an oil spill from available observations. Sampling the posterior distribution, however, can be computationally prohibitive unless the forward model is replaced by an inexpensive surrogate. Yet the construction of globally accurate surrogates can be challenging when the forward model exhibits strong nonlinear variations. We present an iterative data-driven algorithm for the construction of polynomial chaos surrogates whose accuracy is localized in regions of high posterior probability. Two synthetic oil spill experiments, in which the construction of prior-based surrogates is not feasible, are conducted to assess the performance of the proposed algorithm in estimating five source parameters. The algorithm successfully provided a good approximation of the posterior distribution and accelerated the estimation of the oil spill source parameters and their uncertainties by an order of 100 folds.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":"42 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative data-driven construction of surrogates for an efficient Bayesian identification of oil spill source parameters from image contours\",\"authors\":\"Samah El Mohtar, Olivier Le Maître, Omar Knio, Ibrahim Hoteit\",\"doi\":\"10.1007/s10596-024-10288-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Identifying the source of an oil spill is an essential step in environmental forensics. The Bayesian approach allows to estimate the source parameters of an oil spill from available observations. Sampling the posterior distribution, however, can be computationally prohibitive unless the forward model is replaced by an inexpensive surrogate. Yet the construction of globally accurate surrogates can be challenging when the forward model exhibits strong nonlinear variations. We present an iterative data-driven algorithm for the construction of polynomial chaos surrogates whose accuracy is localized in regions of high posterior probability. Two synthetic oil spill experiments, in which the construction of prior-based surrogates is not feasible, are conducted to assess the performance of the proposed algorithm in estimating five source parameters. The algorithm successfully provided a good approximation of the posterior distribution and accelerated the estimation of the oil spill source parameters and their uncertainties by an order of 100 folds.</p>\",\"PeriodicalId\":10662,\"journal\":{\"name\":\"Computational Geosciences\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10596-024-10288-9\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10596-024-10288-9","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Iterative data-driven construction of surrogates for an efficient Bayesian identification of oil spill source parameters from image contours
Identifying the source of an oil spill is an essential step in environmental forensics. The Bayesian approach allows to estimate the source parameters of an oil spill from available observations. Sampling the posterior distribution, however, can be computationally prohibitive unless the forward model is replaced by an inexpensive surrogate. Yet the construction of globally accurate surrogates can be challenging when the forward model exhibits strong nonlinear variations. We present an iterative data-driven algorithm for the construction of polynomial chaos surrogates whose accuracy is localized in regions of high posterior probability. Two synthetic oil spill experiments, in which the construction of prior-based surrogates is not feasible, are conducted to assess the performance of the proposed algorithm in estimating five source parameters. The algorithm successfully provided a good approximation of the posterior distribution and accelerated the estimation of the oil spill source parameters and their uncertainties by an order of 100 folds.
期刊介绍:
Computational Geosciences publishes high quality papers on mathematical modeling, simulation, numerical analysis, and other computational aspects of the geosciences. In particular the journal is focused on advanced numerical methods for the simulation of subsurface flow and transport, and associated aspects such as discretization, gridding, upscaling, optimization, data assimilation, uncertainty assessment, and high performance parallel and grid computing.
Papers treating similar topics but with applications to other fields in the geosciences, such as geomechanics, geophysics, oceanography, or meteorology, will also be considered.
The journal provides a platform for interaction and multidisciplinary collaboration among diverse scientific groups, from both academia and industry, which share an interest in developing mathematical models and efficient algorithms for solving them, such as mathematicians, engineers, chemists, physicists, and geoscientists.