多胞型 I 的非阿贝尔切分集的复杂性:特殊同质列支群

Pub Date : 2024-05-13 DOI:10.1017/etds.2024.38
PETER KAISER
{"title":"多胞型 I 的非阿贝尔切分集的复杂性:特殊同质列支群","authors":"PETER KAISER","doi":"10.1017/etds.2024.38","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to determine the asymptotic growth rate of the complexity function of cut-and-project sets in the non-abelian case. In the case of model sets of polytopal type in homogeneous two-step nilpotent Lie groups, we can establish that the complexity function asymptotically behaves like <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000385_inline1.png\"/> <jats:tex-math> $r^{{\\mathrm {homdim}}(G) \\dim (H)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Further, we generalize the concept of acceptance domains to locally compact second countable groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complexity of non-abelian cut-and-project sets of polytopal type I: special homogeneous Lie groups\",\"authors\":\"PETER KAISER\",\"doi\":\"10.1017/etds.2024.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to determine the asymptotic growth rate of the complexity function of cut-and-project sets in the non-abelian case. In the case of model sets of polytopal type in homogeneous two-step nilpotent Lie groups, we can establish that the complexity function asymptotically behaves like <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000385_inline1.png\\\"/> <jats:tex-math> $r^{{\\\\mathrm {homdim}}(G) \\\\dim (H)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Further, we generalize the concept of acceptance domains to locally compact second countable groups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是确定在非阿贝尔情况下切投集复杂性函数的渐近增长率。在同质两步零钾烈群中的多顶型模型集的情况下,我们可以确定复杂性函数渐近地表现为 $r^{{\mathrm {homdim}}(G) \dim (H)}$ 。此外,我们还将接受域的概念推广到局部紧凑的第二可数群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Complexity of non-abelian cut-and-project sets of polytopal type I: special homogeneous Lie groups
The aim of this paper is to determine the asymptotic growth rate of the complexity function of cut-and-project sets in the non-abelian case. In the case of model sets of polytopal type in homogeneous two-step nilpotent Lie groups, we can establish that the complexity function asymptotically behaves like $r^{{\mathrm {homdim}}(G) \dim (H)}$ . Further, we generalize the concept of acceptance domains to locally compact second countable groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信