{"title":"多胞型 I 的非阿贝尔切分集的复杂性:特殊同质列支群","authors":"PETER KAISER","doi":"10.1017/etds.2024.38","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to determine the asymptotic growth rate of the complexity function of cut-and-project sets in the non-abelian case. In the case of model sets of polytopal type in homogeneous two-step nilpotent Lie groups, we can establish that the complexity function asymptotically behaves like <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000385_inline1.png\"/> <jats:tex-math> $r^{{\\mathrm {homdim}}(G) \\dim (H)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Further, we generalize the concept of acceptance domains to locally compact second countable groups.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"42 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complexity of non-abelian cut-and-project sets of polytopal type I: special homogeneous Lie groups\",\"authors\":\"PETER KAISER\",\"doi\":\"10.1017/etds.2024.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to determine the asymptotic growth rate of the complexity function of cut-and-project sets in the non-abelian case. In the case of model sets of polytopal type in homogeneous two-step nilpotent Lie groups, we can establish that the complexity function asymptotically behaves like <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000385_inline1.png\\\"/> <jats:tex-math> $r^{{\\\\mathrm {homdim}}(G) \\\\dim (H)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Further, we generalize the concept of acceptance domains to locally compact second countable groups.\",\"PeriodicalId\":50504,\"journal\":{\"name\":\"Ergodic Theory and Dynamical Systems\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergodic Theory and Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.38\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.38","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Complexity of non-abelian cut-and-project sets of polytopal type I: special homogeneous Lie groups
The aim of this paper is to determine the asymptotic growth rate of the complexity function of cut-and-project sets in the non-abelian case. In the case of model sets of polytopal type in homogeneous two-step nilpotent Lie groups, we can establish that the complexity function asymptotically behaves like $r^{{\mathrm {homdim}}(G) \dim (H)}$ . Further, we generalize the concept of acceptance domains to locally compact second countable groups.
期刊介绍:
Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.