仿射环的不变关系

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Wided Ghardallou, Hessamaldin Mohammadi, Richard C. Linger, Mark Pleszkoch, JiMeng Loh, Ali Mili
{"title":"仿射环的不变关系","authors":"Wided Ghardallou,&nbsp;Hessamaldin Mohammadi,&nbsp;Richard C. Linger,&nbsp;Mark Pleszkoch,&nbsp;JiMeng Loh,&nbsp;Ali Mili","doi":"10.1007/s00236-024-00457-9","DOIUrl":null,"url":null,"abstract":"<div><p>Invariant relations are used to analyze while loops; while their primary application is to derive the function of a loop, they can also be used to derive loop invariants, weakest preconditions, strongest postconditions, sufficient conditions of correctness, necessary conditions of correctness, and termination conditions of loops. In this paper we present two generic invariant relations that capture the semantics of loops whose loop body applies affine transformations on numeric variables.\n</p></div>","PeriodicalId":7189,"journal":{"name":"Acta Informatica","volume":"61 3","pages":"261 - 314"},"PeriodicalIF":0.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00236-024-00457-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Invariant relations for affine loops\",\"authors\":\"Wided Ghardallou,&nbsp;Hessamaldin Mohammadi,&nbsp;Richard C. Linger,&nbsp;Mark Pleszkoch,&nbsp;JiMeng Loh,&nbsp;Ali Mili\",\"doi\":\"10.1007/s00236-024-00457-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Invariant relations are used to analyze while loops; while their primary application is to derive the function of a loop, they can also be used to derive loop invariants, weakest preconditions, strongest postconditions, sufficient conditions of correctness, necessary conditions of correctness, and termination conditions of loops. In this paper we present two generic invariant relations that capture the semantics of loops whose loop body applies affine transformations on numeric variables.\\n</p></div>\",\"PeriodicalId\":7189,\"journal\":{\"name\":\"Acta Informatica\",\"volume\":\"61 3\",\"pages\":\"261 - 314\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00236-024-00457-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Informatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00236-024-00457-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00236-024-00457-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

不变量关系用于分析 while 循环;虽然它们的主要应用是推导循环的函数,但也可用于推导循环不变量、最弱前置条件、最强后置条件、正确性充分条件、正确性必要条件和循环终止条件。在本文中,我们提出了两个通用不变式关系,它们捕捉了循环体对数值变量进行仿射变换的循环语义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Invariant relations for affine loops

Invariant relations for affine loops

Invariant relations are used to analyze while loops; while their primary application is to derive the function of a loop, they can also be used to derive loop invariants, weakest preconditions, strongest postconditions, sufficient conditions of correctness, necessary conditions of correctness, and termination conditions of loops. In this paper we present two generic invariant relations that capture the semantics of loops whose loop body applies affine transformations on numeric variables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Informatica
Acta Informatica 工程技术-计算机:信息系统
CiteScore
2.40
自引率
16.70%
发文量
24
审稿时长
>12 weeks
期刊介绍: Acta Informatica provides international dissemination of articles on formal methods for the design and analysis of programs, computing systems and information structures, as well as related fields of Theoretical Computer Science such as Automata Theory, Logic in Computer Science, and Algorithmics. Topics of interest include: • semantics of programming languages • models and modeling languages for concurrent, distributed, reactive and mobile systems • models and modeling languages for timed, hybrid and probabilistic systems • specification, program analysis and verification • model checking and theorem proving • modal, temporal, first- and higher-order logics, and their variants • constraint logic, SAT/SMT-solving techniques • theoretical aspects of databases, semi-structured data and finite model theory • theoretical aspects of artificial intelligence, knowledge representation, description logic • automata theory, formal languages, term and graph rewriting • game-based models, synthesis • type theory, typed calculi • algebraic, coalgebraic and categorical methods • formal aspects of performance, dependability and reliability analysis • foundations of information and network security • parallel, distributed and randomized algorithms • design and analysis of algorithms • foundations of network and communication protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信