用 Buchloe dactyloides (Nutt.) Engelm 与生物炭结合修复多环芳烃污染土壤的可行性研究

IF 2.8 3区 农林科学 Q3 ENVIRONMENTAL SCIENCES
Yuancheng Wang, Ao Li, Xia Li, Jiahui Yin, Xiaoxia Li, Yufeng Chen, Bokun Zou, Yongqiang Qian, Zhenyuan Sun
{"title":"用 Buchloe dactyloides (Nutt.) Engelm 与生物炭结合修复多环芳烃污染土壤的可行性研究","authors":"Yuancheng Wang, Ao Li, Xia Li, Jiahui Yin, Xiaoxia Li, Yufeng Chen, Bokun Zou, Yongqiang Qian, Zhenyuan Sun","doi":"10.1007/s11368-024-03807-9","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Although the combined plant-biochar remediation in improving soil contaminated by polycyclic aromatic hydrocarbons (PAHs) is considered efficient (Singha and Pandey in Crit Rev Biotechnol 41:749–766, 2021), the potential for application remains poorly known. This study used clones of <i>Buchloe dactyloides</i> to evaluate the effects of biochar on the capability of phytoremediation and rhizosphere soil contaminated with PAH.</p><h3 data-test=\"abstract-sub-heading\">Materials and methods</h3><p>Pot experiments were conducted to assess the effects of biochar on growth physiological parameters of <i>B. dactyloides</i> growth, accumulation of PAHs in <i>B. dactyloides</i>, and soil environment.</p><h3 data-test=\"abstract-sub-heading\">Results and discussion</h3><p>The results showed that the application of biochar increased the levels of antioxidants (free proline, glutathione, and ascorbic acid), antioxidant enzymes (catalase and laccase), and phytohormones (abscisic acid, indole acetic acid, jasmonic acid, salicylic acid, and gibberellin), decreased the accumulation of reactive oxygen species and lipid peroxidation in the roots, thereby enhancing the antioxidant defense ability and improving PAHs tolerance in roots of <i>B. dactyloides</i>. Moreover, the activities of enzymes (catalase, dehydrogenases, urease and protease) and soil nutrients in the rhizosphere soil were significantly increased, the content of PAHs decreased, and the health of the rhizosphere soil was improved.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Biochar treatment promoted the accumulation of PAHs, improved soil environment and significantly enhanced the effects of phytoremediation. Therefore, the combined application of <i>B. dactyloides</i> and biochar can be considered as a feasible approach for the phytoremediation of PAH-contaminated soil.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"30 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility study of PAHs contaminated soil remediation by Buchloe dactyloides (Nutt.) Engelm combined with biochar\",\"authors\":\"Yuancheng Wang, Ao Li, Xia Li, Jiahui Yin, Xiaoxia Li, Yufeng Chen, Bokun Zou, Yongqiang Qian, Zhenyuan Sun\",\"doi\":\"10.1007/s11368-024-03807-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose</h3><p>Although the combined plant-biochar remediation in improving soil contaminated by polycyclic aromatic hydrocarbons (PAHs) is considered efficient (Singha and Pandey in Crit Rev Biotechnol 41:749–766, 2021), the potential for application remains poorly known. This study used clones of <i>Buchloe dactyloides</i> to evaluate the effects of biochar on the capability of phytoremediation and rhizosphere soil contaminated with PAH.</p><h3 data-test=\\\"abstract-sub-heading\\\">Materials and methods</h3><p>Pot experiments were conducted to assess the effects of biochar on growth physiological parameters of <i>B. dactyloides</i> growth, accumulation of PAHs in <i>B. dactyloides</i>, and soil environment.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results and discussion</h3><p>The results showed that the application of biochar increased the levels of antioxidants (free proline, glutathione, and ascorbic acid), antioxidant enzymes (catalase and laccase), and phytohormones (abscisic acid, indole acetic acid, jasmonic acid, salicylic acid, and gibberellin), decreased the accumulation of reactive oxygen species and lipid peroxidation in the roots, thereby enhancing the antioxidant defense ability and improving PAHs tolerance in roots of <i>B. dactyloides</i>. Moreover, the activities of enzymes (catalase, dehydrogenases, urease and protease) and soil nutrients in the rhizosphere soil were significantly increased, the content of PAHs decreased, and the health of the rhizosphere soil was improved.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusions</h3><p>Biochar treatment promoted the accumulation of PAHs, improved soil environment and significantly enhanced the effects of phytoremediation. Therefore, the combined application of <i>B. dactyloides</i> and biochar can be considered as a feasible approach for the phytoremediation of PAH-contaminated soil.</p>\",\"PeriodicalId\":17139,\"journal\":{\"name\":\"Journal of Soils and Sediments\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soils and Sediments\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11368-024-03807-9\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soils and Sediments","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11368-024-03807-9","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目的 虽然植物-生物炭联合修复被多环芳烃(PAHs)污染的土壤被认为是有效的(Singha 和 Pandey 在 Crit Rev Biotechnol 41:749-766, 2021 中),但其应用潜力仍鲜为人知。本研究利用 Buchloe dactyloides 的克隆来评估生物炭对植物修复能力和多环芳烃污染的根瘤土壤的影响。材料和方法进行了盆栽实验,以评估生物炭对 B. dactyloides 生长的生理参数、B. dactyloides 中多环芳烃的积累以及土壤环境的影响。结果与讨论结果表明,施用生物炭提高了抗氧化剂(游离脯氨酸、谷胱甘肽和抗坏血酸)、抗氧化酶(过氧化氢酶和漆酶)和植物激素(脱落酸、吲哚乙酸、茉莉酸、水杨酸和赤霉素)的水平,减少了根中活性氧的积累和脂质过氧化,从而增强了根的抗氧化防御能力,提高了根对多环芳烃的耐受性。dactyloides根系对多环芳烃的耐受性。此外,根瘤土壤中酶(过氧化氢酶、脱氢酶、脲酶和蛋白酶)和土壤养分的活性显著提高,多环芳烃含量降低,根瘤土壤的健康状况得到改善。因此,在多环芳烃污染土壤的植物修复中,联合应用 B. dactyloides 和生物炭是一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Feasibility study of PAHs contaminated soil remediation by Buchloe dactyloides (Nutt.) Engelm combined with biochar

Feasibility study of PAHs contaminated soil remediation by Buchloe dactyloides (Nutt.) Engelm combined with biochar

Purpose

Although the combined plant-biochar remediation in improving soil contaminated by polycyclic aromatic hydrocarbons (PAHs) is considered efficient (Singha and Pandey in Crit Rev Biotechnol 41:749–766, 2021), the potential for application remains poorly known. This study used clones of Buchloe dactyloides to evaluate the effects of biochar on the capability of phytoremediation and rhizosphere soil contaminated with PAH.

Materials and methods

Pot experiments were conducted to assess the effects of biochar on growth physiological parameters of B. dactyloides growth, accumulation of PAHs in B. dactyloides, and soil environment.

Results and discussion

The results showed that the application of biochar increased the levels of antioxidants (free proline, glutathione, and ascorbic acid), antioxidant enzymes (catalase and laccase), and phytohormones (abscisic acid, indole acetic acid, jasmonic acid, salicylic acid, and gibberellin), decreased the accumulation of reactive oxygen species and lipid peroxidation in the roots, thereby enhancing the antioxidant defense ability and improving PAHs tolerance in roots of B. dactyloides. Moreover, the activities of enzymes (catalase, dehydrogenases, urease and protease) and soil nutrients in the rhizosphere soil were significantly increased, the content of PAHs decreased, and the health of the rhizosphere soil was improved.

Conclusions

Biochar treatment promoted the accumulation of PAHs, improved soil environment and significantly enhanced the effects of phytoremediation. Therefore, the combined application of B. dactyloides and biochar can be considered as a feasible approach for the phytoremediation of PAH-contaminated soil.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Soils and Sediments
Journal of Soils and Sediments 环境科学-土壤科学
CiteScore
7.00
自引率
5.60%
发文量
256
审稿时长
3.5 months
期刊介绍: The Journal of Soils and Sediments (JSS) is devoted to soils and sediments; it deals with contaminated, intact and disturbed soils and sediments. JSS explores both the common aspects and the differences between these two environmental compartments. Inter-linkages at the catchment scale and with the Earth’s system (inter-compartment) are an important topic in JSS. The range of research coverage includes the effects of disturbances and contamination; research, strategies and technologies for prediction, prevention, and protection; identification and characterization; treatment, remediation and reuse; risk assessment and management; creation and implementation of quality standards; international regulation and legislation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信