{"title":"具有李亚普诺夫、佩龙和上限稳定度对比组合的自主微分系统实例","authors":"I. N. Sergeev","doi":"10.3103/s0027132224700062","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>New characteristics of differential systems are studied, which meaningfully develop the concepts of Lyapunov, Perron, and upper limit stability or instability of the zero solution of a differential system from the standpoint of probability theory. Examples of autonomous systems are proposed for which these characteristics take opposite values in a certain sense.</p>","PeriodicalId":42963,"journal":{"name":"Moscow University Mathematics Bulletin","volume":"65 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examples of Autonomous Differential Systems with Contrasting Combinations of Lyapunov, Perron, and Upper-Limit Stability Measures\",\"authors\":\"I. N. Sergeev\",\"doi\":\"10.3103/s0027132224700062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>New characteristics of differential systems are studied, which meaningfully develop the concepts of Lyapunov, Perron, and upper limit stability or instability of the zero solution of a differential system from the standpoint of probability theory. Examples of autonomous systems are proposed for which these characteristics take opposite values in a certain sense.</p>\",\"PeriodicalId\":42963,\"journal\":{\"name\":\"Moscow University Mathematics Bulletin\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Mathematics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s0027132224700062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mathematics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0027132224700062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Examples of Autonomous Differential Systems with Contrasting Combinations of Lyapunov, Perron, and Upper-Limit Stability Measures
Abstract
New characteristics of differential systems are studied, which meaningfully develop the concepts of Lyapunov, Perron, and upper limit stability or instability of the zero solution of a differential system from the standpoint of probability theory. Examples of autonomous systems are proposed for which these characteristics take opposite values in a certain sense.
期刊介绍:
Moscow University Mathematics Bulletin is the journal of scientific publications reflecting the most important areas of mathematical studies at Lomonosov Moscow State University. The journal covers research in theory of functions, functional analysis, algebra, geometry, topology, ordinary and partial differential equations, probability theory, stochastic processes, mathematical statistics, optimal control, number theory, mathematical logic, theory of algorithms, discrete mathematics and computational mathematics.