具有李亚普诺夫、佩龙和上限稳定度对比组合的自主微分系统实例

IF 0.2 Q4 MATHEMATICS
I. N. Sergeev
{"title":"具有李亚普诺夫、佩龙和上限稳定度对比组合的自主微分系统实例","authors":"I. N. Sergeev","doi":"10.3103/s0027132224700062","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>New characteristics of differential systems are studied, which meaningfully develop the concepts of Lyapunov, Perron, and upper limit stability or instability of the zero solution of a differential system from the standpoint of probability theory. Examples of autonomous systems are proposed for which these characteristics take opposite values in a certain sense.</p>","PeriodicalId":42963,"journal":{"name":"Moscow University Mathematics Bulletin","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examples of Autonomous Differential Systems with Contrasting Combinations of Lyapunov, Perron, and Upper-Limit Stability Measures\",\"authors\":\"I. N. Sergeev\",\"doi\":\"10.3103/s0027132224700062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>New characteristics of differential systems are studied, which meaningfully develop the concepts of Lyapunov, Perron, and upper limit stability or instability of the zero solution of a differential system from the standpoint of probability theory. Examples of autonomous systems are proposed for which these characteristics take opposite values in a certain sense.</p>\",\"PeriodicalId\":42963,\"journal\":{\"name\":\"Moscow University Mathematics Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Mathematics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s0027132224700062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mathematics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0027132224700062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 研究了微分系统的新特征,这些特征从概率论的角度有意义地发展了微分系统零解的 Lyapunov、Perron 和上限稳定性或不稳定性概念。还提出了在一定意义上这些特征取相反值的自治系统的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examples of Autonomous Differential Systems with Contrasting Combinations of Lyapunov, Perron, and Upper-Limit Stability Measures

Abstract

New characteristics of differential systems are studied, which meaningfully develop the concepts of Lyapunov, Perron, and upper limit stability or instability of the zero solution of a differential system from the standpoint of probability theory. Examples of autonomous systems are proposed for which these characteristics take opposite values in a certain sense.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
25.00%
发文量
13
期刊介绍: Moscow University Mathematics Bulletin  is the journal of scientific publications reflecting the most important areas of mathematical studies at Lomonosov Moscow State University. The journal covers research in theory of functions, functional analysis, algebra, geometry, topology, ordinary and partial differential equations, probability theory, stochastic processes, mathematical statistics, optimal control, number theory, mathematical logic, theory of algorithms, discrete mathematics and computational mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信