关于四边五边形映射

Charalampos Evripidou, Pavlos Kassotakis, Anastasios Tongas
{"title":"关于四边五边形映射","authors":"Charalampos Evripidou, Pavlos Kassotakis, Anastasios Tongas","doi":"arxiv-2405.04945","DOIUrl":null,"url":null,"abstract":"We classify rational solutions of a specific type of the set theoretical\nversion of the pentagon equation. That is, we find all quadrirational maps\n$R:(x,y)\\mapsto (u(x,y),v(x,y)),$ where $u, v$ are two rational functions on\ntwo arguments, that serve as solutions of the pentagon equation. Furthermore,\nprovided a pentagon map that admits a partial inverse, we obtain genuine\nentwining pentagon set theoretical solutions.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On quadrirational pentagon maps\",\"authors\":\"Charalampos Evripidou, Pavlos Kassotakis, Anastasios Tongas\",\"doi\":\"arxiv-2405.04945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify rational solutions of a specific type of the set theoretical\\nversion of the pentagon equation. That is, we find all quadrirational maps\\n$R:(x,y)\\\\mapsto (u(x,y),v(x,y)),$ where $u, v$ are two rational functions on\\ntwo arguments, that serve as solutions of the pentagon equation. Furthermore,\\nprovided a pentagon map that admits a partial inverse, we obtain genuine\\nentwining pentagon set theoretical solutions.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.04945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.04945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们对五边形方程的集合理论转换的特定类型的有理解进行分类。也就是说,我们找到了作为五边形方程解的所有四元映射$R:(x,y)\mapsto (u(x,y),v(x,y))$,其中$u, v$ 是关于两个参数的两个有理函数。此外,只要五边形映射允许部分逆,我们就能得到真正的五边形集理论解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On quadrirational pentagon maps
We classify rational solutions of a specific type of the set theoretical version of the pentagon equation. That is, we find all quadrirational maps $R:(x,y)\mapsto (u(x,y),v(x,y)),$ where $u, v$ are two rational functions on two arguments, that serve as solutions of the pentagon equation. Furthermore, provided a pentagon map that admits a partial inverse, we obtain genuine entwining pentagon set theoretical solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信