有界关系长度的基群和群呈现

Pub Date : 2024-05-10 DOI:10.1007/s10711-024-00915-1
Sergio Zamora
{"title":"有界关系长度的基群和群呈现","authors":"Sergio Zamora","doi":"10.1007/s10711-024-00915-1","DOIUrl":null,"url":null,"abstract":"<p>We study the geometry of compact geodesic spaces with trivial first Betti number admitting large finite groups of isometries. We show that if a finite group <i>G</i> acts by isometries on a compact geodesic space <i>X</i> whose first Betti number vanishes, then <span>\\({\\text {diam}}(X) / {\\text {diam}}(X / G ) \\le 4 \\sqrt{ \\vert G \\vert }\\)</span>. For a group <i>G</i> and a finite symmetric generating set <i>S</i>, <span>\\(P_k(\\varGamma (G, S))\\)</span> denotes the 2-dimensional CW-complex whose 1-skeleton is the Cayley graph <span>\\(\\varGamma \\)</span> of <i>G</i> with respect to <i>S</i> and whose 2-cells are <i>m</i>-gons for <span>\\(0 \\le m \\le k\\)</span>, defined by the simple graph loops of length <i>m</i> in <span>\\(\\varGamma \\)</span>, up to cyclic permutations. Let <i>G</i> be a finite abelian group with <span>\\(\\vert G \\vert \\ge 3\\)</span> and <i>S</i> a symmetric set of generators for which <span>\\(P_k(\\varGamma (G,S))\\)</span> has trivial first Betti number. We show that the first nontrivial eigenvalue <span>\\(-\\lambda _1\\)</span> of the Laplacian on the Cayley graph satisfies <span>\\(\\lambda _1 \\ge 2 - 2 \\cos ( 2 \\pi / k ) \\)</span>. We also give an explicit upper bound on the diameter of the Cayley graph of <i>G</i> with respect to <i>S</i> of the form <span>\\(O (k^2 \\vert S \\vert \\log \\vert G \\vert )\\)</span>. Related explicit bounds for the Cheeger constant and Kazhdan constant of the pair (<i>G</i>, <i>S</i>) are also obtained.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fundamental groups and group presentations with bounded relator lengths\",\"authors\":\"Sergio Zamora\",\"doi\":\"10.1007/s10711-024-00915-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the geometry of compact geodesic spaces with trivial first Betti number admitting large finite groups of isometries. We show that if a finite group <i>G</i> acts by isometries on a compact geodesic space <i>X</i> whose first Betti number vanishes, then <span>\\\\({\\\\text {diam}}(X) / {\\\\text {diam}}(X / G ) \\\\le 4 \\\\sqrt{ \\\\vert G \\\\vert }\\\\)</span>. For a group <i>G</i> and a finite symmetric generating set <i>S</i>, <span>\\\\(P_k(\\\\varGamma (G, S))\\\\)</span> denotes the 2-dimensional CW-complex whose 1-skeleton is the Cayley graph <span>\\\\(\\\\varGamma \\\\)</span> of <i>G</i> with respect to <i>S</i> and whose 2-cells are <i>m</i>-gons for <span>\\\\(0 \\\\le m \\\\le k\\\\)</span>, defined by the simple graph loops of length <i>m</i> in <span>\\\\(\\\\varGamma \\\\)</span>, up to cyclic permutations. Let <i>G</i> be a finite abelian group with <span>\\\\(\\\\vert G \\\\vert \\\\ge 3\\\\)</span> and <i>S</i> a symmetric set of generators for which <span>\\\\(P_k(\\\\varGamma (G,S))\\\\)</span> has trivial first Betti number. We show that the first nontrivial eigenvalue <span>\\\\(-\\\\lambda _1\\\\)</span> of the Laplacian on the Cayley graph satisfies <span>\\\\(\\\\lambda _1 \\\\ge 2 - 2 \\\\cos ( 2 \\\\pi / k ) \\\\)</span>. We also give an explicit upper bound on the diameter of the Cayley graph of <i>G</i> with respect to <i>S</i> of the form <span>\\\\(O (k^2 \\\\vert S \\\\vert \\\\log \\\\vert G \\\\vert )\\\\)</span>. Related explicit bounds for the Cheeger constant and Kazhdan constant of the pair (<i>G</i>, <i>S</i>) are also obtained.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00915-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00915-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有微不足道的第一贝蒂数(first Betti number)的紧凑测地空间的几何,这些空间容纳了大量有限的等距群。我们证明,如果一个有限群 G 通过等向作用于第一贝蒂数消失的紧凑大地空间 X,那么 \({\text {diam}}(X) / {\text {diam}}(X / G ) \le 4 \sqrt{ \vert G \vert }\).对于一个群 G 和一个有限对称生成集 S,\(P_k(\varGamma (G, S))\) 表示二维 CW 复数,其 1 骨架是 G 关于 S 的 Cayley 图\(\varGamma \),其 2 单元是 m-gons,为 \(0 \le m \le k\)、中长度为 m 的简单图环所定义,直至循环排列。让 G 是一个有限无边群,具有 \(\vert G \vert \ge 3\) ,S 是一个对称的子集,其中 \(P_k(\varGamma (G,S))\) 具有微不足道的第一个贝蒂数。我们证明了 Cayley 图上的拉普拉奇的第一个非难特征值 \(-\lambda _1\) 满足 \(\lambda _1 \ge 2 - 2 \cos ( 2 \pi / k ) \)。我们还给出了 G 的 Cayley 图关于 S 的直径的显式上界,其形式为 \(O (k^2 \vert S \vert \log \vert G \vert )\)。还得到了一对 (G, S) 的切格常数和卡兹丹常数的相关显式边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fundamental groups and group presentations with bounded relator lengths

分享
查看原文
Fundamental groups and group presentations with bounded relator lengths

We study the geometry of compact geodesic spaces with trivial first Betti number admitting large finite groups of isometries. We show that if a finite group G acts by isometries on a compact geodesic space X whose first Betti number vanishes, then \({\text {diam}}(X) / {\text {diam}}(X / G ) \le 4 \sqrt{ \vert G \vert }\). For a group G and a finite symmetric generating set S, \(P_k(\varGamma (G, S))\) denotes the 2-dimensional CW-complex whose 1-skeleton is the Cayley graph \(\varGamma \) of G with respect to S and whose 2-cells are m-gons for \(0 \le m \le k\), defined by the simple graph loops of length m in \(\varGamma \), up to cyclic permutations. Let G be a finite abelian group with \(\vert G \vert \ge 3\) and S a symmetric set of generators for which \(P_k(\varGamma (G,S))\) has trivial first Betti number. We show that the first nontrivial eigenvalue \(-\lambda _1\) of the Laplacian on the Cayley graph satisfies \(\lambda _1 \ge 2 - 2 \cos ( 2 \pi / k ) \). We also give an explicit upper bound on the diameter of the Cayley graph of G with respect to S of the form \(O (k^2 \vert S \vert \log \vert G \vert )\). Related explicit bounds for the Cheeger constant and Kazhdan constant of the pair (GS) are also obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信