弱意义上连续时间马尔可夫链的扰动分析

IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY
Na Lin, Yuanyuan Liu
{"title":"弱意义上连续时间马尔可夫链的扰动分析","authors":"Na Lin, Yuanyuan Liu","doi":"10.1017/jpr.2024.20","DOIUrl":null,"url":null,"abstract":"By the technique of augmented truncations, we obtain the perturbation bounds on the distance of the finite-time state distributions of two continuous-time Markov chains (CTMCs) in a type of weaker norm than the <jats:italic>V</jats:italic>-norm. We derive the estimates for strongly and exponentially ergodic CTMCs. In particular, we apply these results to get the bounds for CTMCs satisfying Doeblin or stochastically monotone conditions. Some examples are presented to illustrate the limitation of the <jats:italic>V</jats:italic>-norm in perturbation analysis and to show the quality of the weak norm.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"41 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perturbation analysis for continuous-time Markov chains in a weak sense\",\"authors\":\"Na Lin, Yuanyuan Liu\",\"doi\":\"10.1017/jpr.2024.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By the technique of augmented truncations, we obtain the perturbation bounds on the distance of the finite-time state distributions of two continuous-time Markov chains (CTMCs) in a type of weaker norm than the <jats:italic>V</jats:italic>-norm. We derive the estimates for strongly and exponentially ergodic CTMCs. In particular, we apply these results to get the bounds for CTMCs satisfying Doeblin or stochastically monotone conditions. Some examples are presented to illustrate the limitation of the <jats:italic>V</jats:italic>-norm in perturbation analysis and to show the quality of the weak norm.\",\"PeriodicalId\":50256,\"journal\":{\"name\":\"Journal of Applied Probability\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/jpr.2024.20\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2024.20","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

通过增强截断技术,我们得到了两个连续时间马尔可夫链(CTMC)的有限时间状态分布距离的扰动边界,其规范类型比 V 规范更弱。我们推导了强遍历和指数遍历 CTMC 的估计值。特别是,我们应用这些结果得到了满足多布林或随机单调条件的 CTMC 的边界。我们列举了一些例子来说明 V 准则在扰动分析中的局限性,并展示了弱准则的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perturbation analysis for continuous-time Markov chains in a weak sense
By the technique of augmented truncations, we obtain the perturbation bounds on the distance of the finite-time state distributions of two continuous-time Markov chains (CTMCs) in a type of weaker norm than the V-norm. We derive the estimates for strongly and exponentially ergodic CTMCs. In particular, we apply these results to get the bounds for CTMCs satisfying Doeblin or stochastically monotone conditions. Some examples are presented to illustrate the limitation of the V-norm in perturbation analysis and to show the quality of the weak norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Probability
Journal of Applied Probability 数学-统计学与概率论
CiteScore
1.50
自引率
10.00%
发文量
92
审稿时长
6-12 weeks
期刊介绍: Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used. A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信