{"title":"流体催化裂化废催化剂的预处理和浸出行为研究","authors":"Mingshuai Wu, Wenbo Cheng, Fengshan Yu, Maolin Tian, Xueli Wang, Yongjie Bu, Jiawei Wen, Guoyong Huang","doi":"10.1007/s40831-024-00831-4","DOIUrl":null,"url":null,"abstract":"<p>The reclamation of exhausted Fluid Catalytic Cracking (FCC) catalysts has attracted considerable interest. However, the leaching rates of valuable metals in waste can be influenced by the pretreatment and calcination process. This study focuses on investigating the impact of pretreatment temperature on the metal-leaching process of spent FCC catalysts. After calcination at 1200 °C, the Al<sub>2</sub>O<sub>3</sub> carrier transformed from γ-Al<sub>2</sub>O<sub>3</sub> to α-Al<sub>2</sub>O<sub>3</sub> with a denser structure. Subsequently, the valuable metals react with the carrier to form regular acid salts, which are averse to the leaching process. While the pretreatment roasting of spent FCC catalysts at 600 °C could not only remove the surface impurities effectively but also keep the original γ-Al<sub>2</sub>O<sub>3</sub> structure, promoting the leaching process. Finally, the kinetic model is studied with the aim of achieving the high-efficiency leaching of Ni in spent FCC catalysts. The leaching kinetics model of Ni accords with the ash diffusion model, and the reaction activation energy is 53.05 kJ/mol, in the temperature range of 60–90 °C, sulfuric acid concentration of 2 mol/L, particle size of less than 200 mesh (75μm). Specifically, for spent FCC catalysts, pretreatment at high temperatures is not conducive to subsequent leaching, while pretreatment at low temperatures is conducive to subsequent leaching of valuable metals.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"22 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Pretreatment and Leaching Behaviors of Spent Fluid Catalytic Cracking Catalysts\",\"authors\":\"Mingshuai Wu, Wenbo Cheng, Fengshan Yu, Maolin Tian, Xueli Wang, Yongjie Bu, Jiawei Wen, Guoyong Huang\",\"doi\":\"10.1007/s40831-024-00831-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The reclamation of exhausted Fluid Catalytic Cracking (FCC) catalysts has attracted considerable interest. However, the leaching rates of valuable metals in waste can be influenced by the pretreatment and calcination process. This study focuses on investigating the impact of pretreatment temperature on the metal-leaching process of spent FCC catalysts. After calcination at 1200 °C, the Al<sub>2</sub>O<sub>3</sub> carrier transformed from γ-Al<sub>2</sub>O<sub>3</sub> to α-Al<sub>2</sub>O<sub>3</sub> with a denser structure. Subsequently, the valuable metals react with the carrier to form regular acid salts, which are averse to the leaching process. While the pretreatment roasting of spent FCC catalysts at 600 °C could not only remove the surface impurities effectively but also keep the original γ-Al<sub>2</sub>O<sub>3</sub> structure, promoting the leaching process. Finally, the kinetic model is studied with the aim of achieving the high-efficiency leaching of Ni in spent FCC catalysts. The leaching kinetics model of Ni accords with the ash diffusion model, and the reaction activation energy is 53.05 kJ/mol, in the temperature range of 60–90 °C, sulfuric acid concentration of 2 mol/L, particle size of less than 200 mesh (75μm). Specifically, for spent FCC catalysts, pretreatment at high temperatures is not conducive to subsequent leaching, while pretreatment at low temperatures is conducive to subsequent leaching of valuable metals.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":17160,\"journal\":{\"name\":\"Journal of Sustainable Metallurgy\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40831-024-00831-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00831-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
流化催化裂化(FCC)催化剂用完后的回收利用引起了人们的极大兴趣。然而,废料中有价金属的浸出率会受到预处理和煅烧过程的影响。本研究主要探讨预处理温度对催化裂化废催化剂金属浸出过程的影响。在 1200 °C 煅烧后,Al2O3 载体从 γ-Al2O3 转变为结构更致密的 α-Al2O3。随后,有价金属会与载体发生反应,形成对浸出过程不利的常规酸盐。而对废催化裂化催化剂进行 600 °C 的预处理焙烧,不仅能有效去除表面杂质,还能保持原有的 γ-Al2O3 结构,促进浸出过程。最后,研究了动力学模型,以期实现废催化裂化催化剂中 Ni 的高效浸出。镍的浸出动力学模型符合灰扩散模型,在温度为 60-90 ℃、硫酸浓度为 2 mol/L、粒度小于 200 目(75μm)的条件下,反应活化能为 53.05 kJ/mol。具体而言,对于催化裂化废催化剂,高温预处理不利于后续浸出,而低温预处理则有利于后续有价金属的浸出。
Study on Pretreatment and Leaching Behaviors of Spent Fluid Catalytic Cracking Catalysts
The reclamation of exhausted Fluid Catalytic Cracking (FCC) catalysts has attracted considerable interest. However, the leaching rates of valuable metals in waste can be influenced by the pretreatment and calcination process. This study focuses on investigating the impact of pretreatment temperature on the metal-leaching process of spent FCC catalysts. After calcination at 1200 °C, the Al2O3 carrier transformed from γ-Al2O3 to α-Al2O3 with a denser structure. Subsequently, the valuable metals react with the carrier to form regular acid salts, which are averse to the leaching process. While the pretreatment roasting of spent FCC catalysts at 600 °C could not only remove the surface impurities effectively but also keep the original γ-Al2O3 structure, promoting the leaching process. Finally, the kinetic model is studied with the aim of achieving the high-efficiency leaching of Ni in spent FCC catalysts. The leaching kinetics model of Ni accords with the ash diffusion model, and the reaction activation energy is 53.05 kJ/mol, in the temperature range of 60–90 °C, sulfuric acid concentration of 2 mol/L, particle size of less than 200 mesh (75μm). Specifically, for spent FCC catalysts, pretreatment at high temperatures is not conducive to subsequent leaching, while pretreatment at low temperatures is conducive to subsequent leaching of valuable metals.
期刊介绍:
Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.