石灰作为铸铁脱硫的可持续替代品的工业生态技术评估

IF 2.5 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
I. Adhiwiguna, K. Vellayadevan, Y. Tekneci, M. Walz, D. Algermissen, R. Deike
{"title":"石灰作为铸铁脱硫的可持续替代品的工业生态技术评估","authors":"I. Adhiwiguna, K. Vellayadevan, Y. Tekneci, M. Walz, D. Algermissen, R. Deike","doi":"10.1007/s40831-024-00829-y","DOIUrl":null,"url":null,"abstract":"<p>This study comprehensively assesses the ecotechnological consideration and perspective of implementing a lime-based desulfurization process in the cast iron industry to replace the utilization of magnesium partially. By adopting an injection process to introduce the lime powder into molten cast iron, this research elucidated that the new alternative concept can successfully be integrated with daily operations without any disparities in cast iron quality, as proved by the production of cast iron products with vermicular graphite. A mixture of lime powder and carbon was utilized, and it was substantiated that the aim of a sulfur content lower than 0.015% can be reliably achieved. Furthermore, an ecological analysis was also conducted to justify the possible environmental advantages. The results indicated that considering the cradle-to-gate approach, the maximum amount of CO<sub>2</sub>eq connected to the lime-based desulfurization is approximately 43 g for 1 kg of desulfurized cast iron. This amount of calculated emission is still expected to be lower than the minimum calculated emission associated with the magnesium-based process, which can reach an amount of 76 g for a similar functional unit.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"37 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industrial Ecotechnological Assessment of Lime as a Sustainable Substitute for Desulfurization of Cast Iron\",\"authors\":\"I. Adhiwiguna, K. Vellayadevan, Y. Tekneci, M. Walz, D. Algermissen, R. Deike\",\"doi\":\"10.1007/s40831-024-00829-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study comprehensively assesses the ecotechnological consideration and perspective of implementing a lime-based desulfurization process in the cast iron industry to replace the utilization of magnesium partially. By adopting an injection process to introduce the lime powder into molten cast iron, this research elucidated that the new alternative concept can successfully be integrated with daily operations without any disparities in cast iron quality, as proved by the production of cast iron products with vermicular graphite. A mixture of lime powder and carbon was utilized, and it was substantiated that the aim of a sulfur content lower than 0.015% can be reliably achieved. Furthermore, an ecological analysis was also conducted to justify the possible environmental advantages. The results indicated that considering the cradle-to-gate approach, the maximum amount of CO<sub>2</sub>eq connected to the lime-based desulfurization is approximately 43 g for 1 kg of desulfurized cast iron. This amount of calculated emission is still expected to be lower than the minimum calculated emission associated with the magnesium-based process, which can reach an amount of 76 g for a similar functional unit.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":17160,\"journal\":{\"name\":\"Journal of Sustainable Metallurgy\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40831-024-00829-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00829-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究全面评估了在铸铁工业中实施石灰脱硫工艺以部分替代镁的使用的生态技术考虑因素和前景。通过采用喷射工艺将石灰粉引入熔融铸铁,这项研究阐明了新的替代概念可以成功地与日常操作相结合,而不会影响铸铁的质量,这一点已通过生产带有蠕墨的铸铁产品得到证明。利用石灰粉和碳的混合物,可以可靠地实现硫含量低于 0.015% 的目标。此外,还进行了生态分析,以证明可能的环境优势。结果表明,考虑到 "从摇篮到终点 "的方法,与石灰脱硫有关的最大二氧化碳当量约为 43 克(每公斤脱硫铸铁)。这一计算排放量预计仍将低于与镁法工艺相关的最小计算排放量,对于类似的功能单元,镁法工艺的排放量可达 76 克。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Industrial Ecotechnological Assessment of Lime as a Sustainable Substitute for Desulfurization of Cast Iron

Industrial Ecotechnological Assessment of Lime as a Sustainable Substitute for Desulfurization of Cast Iron

This study comprehensively assesses the ecotechnological consideration and perspective of implementing a lime-based desulfurization process in the cast iron industry to replace the utilization of magnesium partially. By adopting an injection process to introduce the lime powder into molten cast iron, this research elucidated that the new alternative concept can successfully be integrated with daily operations without any disparities in cast iron quality, as proved by the production of cast iron products with vermicular graphite. A mixture of lime powder and carbon was utilized, and it was substantiated that the aim of a sulfur content lower than 0.015% can be reliably achieved. Furthermore, an ecological analysis was also conducted to justify the possible environmental advantages. The results indicated that considering the cradle-to-gate approach, the maximum amount of CO2eq connected to the lime-based desulfurization is approximately 43 g for 1 kg of desulfurized cast iron. This amount of calculated emission is still expected to be lower than the minimum calculated emission associated with the magnesium-based process, which can reach an amount of 76 g for a similar functional unit.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sustainable Metallurgy
Journal of Sustainable Metallurgy Materials Science-Metals and Alloys
CiteScore
4.00
自引率
12.50%
发文量
151
期刊介绍: Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信